FTLight File/Stream Datenstruktur
und Datenaustausch

Version

2025-12-30 PDF: https:/ftlightapp.eu/pdf/FTLight.pdf

Anwendung

~aats
GitHub: https://github.com/Wegal ink/FTLightApp
FTLight: EKD@JN58nc_Tiirkenfeld. FTLightApp
Web: https://ftlightapp.eu/
Versionsverlauf
2025-12 Benchmarking und Verbesserungsvorschldge von einer KI-Analyse
2024-07 OpenSource-Anwendungsentwicklung ,,FTLightApp*
2023-06 Aktive Elemente und Algorithmen
2022-01 Optimierung fiir geringe Varianz
2021-02 Zeitsynchronisation
2020-09 Datenformat fiir geringe Varianz
2018-03 Konzeptionell unbegrenzte Datenstrukturen und physikalische Einheiten
2016-05 Datenaustausch und Entropie-Modus
2015-04 Update/Speichern und Konsolidierungen
2014-10 Datenformate und Framework-Funktionalitit
2004-03 Speicherorganisation, Datenfluss, Versionen und allgemeiner Uberblick
2004-01 Erste Version basierend auf Diskussionen in der ERAC-VLBI-Gruppe

1997-09 Anforderungen fiir Datenaustausch vom 1. ERAC-Kongress in Heppenheim

https://ftlightapp.eu/pdf/FTLight.pdf
https://github.com/WegaLink/FTLightApp
https://ftlightapp.eu/

Einladung zur breiteren Mitarbeit und Erklarung zur Lizenz

Eine Analyse und Beurteilung der FTLight-Spezifikation durch 7 KI-Systeme hat zu der
Einschitzung gefiihrt, dass deren Designprinzipien auch in anderen Bereichen auf3erhalb des
bisherigen vorrangigen Anwendungsgebietes in der Radioastronomie interessant und niitzlich sein
konnten. Deshalb wurde die weitere Mitarbeit an der FTLight-Spezifikation sowie an der FTLight-
Referenzimplementierung und den auf dieser Basis entstehenden FTLightApp-Anwendungen fiir
eine breitere Mitarbeit gedffnet.

Interessenten sind eingeladen, sich den aktuellen Entwicklungsstand vom GitHub-Repository
(https://github.com/WegaLink/FTLightApp) zu holen und darauf aufbauend Modifikationen,
Erweiterungen, Tests und Designstudien durchzufiihren und diese wiederum mit anderen
Interessenten oder offentlich zu teilen, wenn sie dies mochten.

Die Lizenz der FTLight-Spezifikation und der priméren FTLight-Referenzimplementierung wurde
absichtlich als ,,Unlicensed gewéhlt, um einer freiziigigen Nachnutzung bis hin zur kommerziellen
Nutzung breiten Raum ohne jegliche Beschrankungen zu lassen.

Sollte der aktuelle Stand einer individuellen Weiterentwicklung oder der Weiterentwicklung durch
ein Team von der vorliegenden FTLight-Spezifikation, von einer FTLight-Referenzentwicklung
oder darauf aufbauender FTLightApp Anwendungen ebenfalls 6ffentlich mit einer OpenSource-
Lizenz geteilt werden so wird hiermit angeboten, dass ein Link dazu in die primére FTLight-
Spezifikation aufgenommen werden kann, wodurch weitere Interessenten auf diese Arbeiten
aufmerksam gemacht werden konnen.

Kontakt

Eckhard Email: ekd@ftlightapp.eu Tel.: +49 3834 4123382

https://github.com/WegaLink/FTLightApp
mailto:ekd@ftlightapp.eu

Lizenz

L1177 70 7777777777777 7777777 77
//

// FTLight.pdf: Dokumentation der FTLight File/Stream-Datenstruktur

//

L1177 7777777777777 777777777777 777777777777 7777777777777777777777777777777777

//

// Autor: Eckhard Kantz

// eMail: software@wegalink.eu

// Motivation: European Radio Astronomy Club (ERAC),

// Projekt ALLBIN (https://eracnet.org/workshop/allbin.htm)
//

L1717 707077 7777777777777 7777777777777 77
Dies ist FREIE Software

Hiermit wird eine gebilhrenfreie Erlaubnis fiir alle Personen erteilt, welche eine
Kopie dieser Software einschlieBRlich zugehdriger Dokumentation (der ,Software")
erhalten, mit der Software ohne Einschrédnkungen zu verfahren, einschlieBlich des
Rechts zur Nutzung, zum Kopieren, Modifizieren, Zusammenfithren, Verdffentlichen,
Vertreiben, weiter Lizenzieren, und/oder dem Verkauf von Kopien der Software,
und Personen, welche die Software hierdurch erhalten zu gestatten, dies ebenso
zu tun, unter Vorbehalt der folgenden Bedingungen:

Fir die Nutzung der Software werden keinerlei Bedingungen auferlegt.

DIE SOFTWARE WIRD GELIEFERT ,WIE SIE IST“, OHNE IRGENDEINE GARANTIE, EXPLIZIT
ODER IMPLIZIT, EINSCHLIESSLICH JEDOCH NICHT BEGRENZT AUF DIE NICHTGEWAHRLEISTUNG
EINER EIGNUNG ZUM VERKAUF ODER EINER EIGNUNG UND VERTRAGLICHKEIT FUR EINEN
BESTIMMTEN ZWECK. IN KEINEM FALL DARF DER AUTOR ODER EINER DER COPYRIGHT-INHABER
VERANTWORTLICH GEMACHT WERDEN FUR ANSPRUCHE BELIEBIGER ART, FUR BESCHADIGUNGEN
ODER ANDERE SCHULDZUWEISUNGEN, EGAL OB SIE DURCH EINEN VERTRAG ODER SCHADENS-
ERSATZANSPRUCH ENTSTEHEN, WELCHE IM ZUSAMMENHANG MIT DER SOFTWARE, DEREN NUTZUNG
ODER ANDERER KOMMERZIELLER HANDLUNGEN MIT DER SOFTWARE STEHEN.

This is FREE software

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

There are no conditions imposed on the use of this software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Mitarbeit

Dank gilt allen ERAC Mitgliedern, die mit Hinweisen und Vorschldgen an der Entstehung der
FTLight-Spezifikation (ehemals 'DataX') mitgewirkt haben.

mailto:software@wegalink.eu
https://eracnet.org/workshop/allbin.htm

Inhaltsverzeichnis

FTLight File/Stream Datenstruktur und Datenaustausch
Version

Anwendung

Versionsverlauf

Einladung zur breiteren Mitarbeit und Erklarung zur Lizenz
Kontakt

Lizenz

Mitarbeit

Inhaltsverzeichnis

Summary

Uberblick

Review der FTLight-Spezifikation durch Kl-Systeme
Zielstellung

EinfUhrung

Fallstudien
A — Datenreihe
B — Datensatz mit Zeitstempel
C — Strukturierte Information

Bildung von strukturierten Informationen

Abbildung strukturierter Informationen in einem File/Stream

Entwurfsziele

File/Stream-Struktur
Zeilen innerhalb eines Files/Streams
Informationselemente innerhalb einer Zeile

Statusabhangige Steuerzeichen

Duplizierte Informationselemente in aufeinanderfolgenden Zeilen

VergréBerung einer Informationsmenge durch eine Folgezeile

Verwalten eines aktuellen Pfades

Verwalten einer Gbergeordneten (Parent-)Informationsmenge

Synchrone Schreiboperationen
Flllen von Tabellenspalten mit formatierten Arrays

Volatiles Synchronschreiben

© 00 N N A O OO =22

©

—_ a4 a4 a =
- a4 O o O

—_ a =
w w W

. a4 a4 a4 a4 a4 a A A
N N oo oo o0 o B~ WW

Wiederaufsetzen beim Synchronschreiben
Datentypen am Zeilenanfang

Tabellen-Import

Vergleich von FTLight-Strukturen mit Verzeichnissen, Registraturen und Datenbanken
Verzeichnisse in Dateisystemen
Registraturen
Datenbanken

Datentypen

Sonderzeichen

Textdatentyp

Datentyp fir Zahlendarstellung

Arrays von Zahlen und Text

Bindrer Datentyp (FTL)

Zahlendarstellung im Binarformat (NUM)

Repréasentieren von Datentypen im Binarformat (DTI_...)
Datentyp-ldentifikator (DTI)
DTI_FTLightOpen-Datentyp
DTI_FTLightWrap-Datentyp
DTI_MCL-Datentyp
DTI_FTL-Datentyp
DTI_TXL-Datentyp
DTI_DIF-Datentyp
DTI_UNIT-Datentyp
DTI_TIME-Datentyp
DTI_TOKEN-Datentyp
DTI_LINK-Datentyp
Der FTL-Identifikator-Datentyp (IFTL)

Adressdatentyp
Adressdarstellung
Umgang mit Anderungen

Entropie-Modus (FPGA)
Framework- Funktionalitat

Optionale Werte

Kommentare

18
18
19
20
20
20
21
22
22
22
23
23
24
25
26

26
27
28
28
29
29
29
32
33
33
34

34
36

36
37
38
40

40
40

Standardvorgaben
Mehrfachspezifikationen

Interpretation
Datenintegritat

Prifsummenberechnung

Wiederherstellung defekter Daten
FTLight-Archiv
Versionsverfolgung fur Informationselemente
Version der FTLight-Spezifikation
Zeitsynchronisation
Anfrage/Antwort-Verfahren fir gespeicherte Daten
Anfragestruktur
Allgemeine Anfrageelemente
Anforderung von Identifikatoren
Zeiteinschrankungen
Arrayabfragen
Anfragen, Abonnieren und Schreiben von aktuellen Daten
Datenelement spezifizieren
Laufzeitinformationen
Algorithmen
Benchmarking

Appendix A

A.1 Beispiel fir das Speichern von mehrstufigen Metadaten vor einem Interferometrie-
Datenblock

A.2 Beispiel flr einen Mehrkanalempfanger mit wahlfreier Kanalselektion

A.3 Beispiel fur einen Mehrkanalempféanger mit regelméaBiger Kanalselektion
Entwicklungsverlauf

Kl-Vorschlage zu Modifikationen und Erweiterungen zur Verbesserung der
Anwendbarkeit

A - FTLight File/Stream-Datenprotokoll
B - FTLightApp aus FTLight-Modulen konfiguriert

C - Apps als ausfiihrbare Dateien (Executables) erstellt

40
41
41

41

41
42

43
44
45
45
46
46
46
47
47
48
48
48
50
50
50
54

54
54
55

56

58
58
65
66

Summary

The FTLight specification defines a representation of hierarchical data structures. There are no
conceptual (by design) limitations with regard to the size and depths of data structures as well as
regarding the size of their data elements. Limitations result but from implementation on hardware.

The FTLight specification aims at a high entropy (low redundancy) for representing data elements
as well as hierarchical data structures. There are data format specifications with specific format
features for application programs (apps) and for the data transfer and data storage:

MCL - highest encoding rate exceeding 1 Gbyte/s, in particular on ARM architectures, e.g. on M2
FTL - default format, highest encoding efficiency, typically 97% of a binary data representation
TXL - arbitrary text representation involving all byte values 0..255

NUM - extensive number representation in science, engineering, economy and other areas

DIF - fast data compression for data series with a low variance

FPGA - hardware transfer at almost 100% of available bandwidth

UNIT - comprehensive representation of all basic as well as derived units of the SI standard
TIME - representation of time scales on many levels from micro cosmos to macro cosmos

The FTLight specification has been developed for the special requirements in the science of radio
astronomy and SETI (Search for Extra Terrestrial Intelligence) also with the vision to be a template
for a possible future communication with other civilizations (our possible cosmic neighbors).

Uberblick

Die FTLight-Spezifikation definiert eine Reprédsentation von hierarchischen Datenstrukturen. Es
gibt keinerlei konzeptionelle Beschrankungen (durch das Design) beziiglich der Gréf3e und Tiefe
der Datenstrukturen als auch nicht beziiglich der Grof3e der dargestellten Datenelemente.
Begrenzungen ergeben sich jedoch bei der Umsetzung auf Hardware.

Die FTLight-Spezifikation strebt eine hohe Entropie (geringe Redundanz) fiir die Darstellung von
Datenelementen als auch fiir hierarchische Datenstrukturen an. Sie enthélt Spezifikationen von
Datenformaten mit spezifischen Eigenschaften fiir Anwendungsprogramme (Apps) und fiir die
Ubertragung und Speicherung von Daten:

MCL - hochste Rate fiir das Kodieren von Daten mit iiber 1 GByte/s, insbesondere auf
ARM-Architekturen wie zum Beispiel M2

FTL - Standardformat, hochste Effizienz der Kodierung von typisch 97% im Vergleich zur
bindren Kodierung

TXL - unbeschrinkte Prisentation von Texten mit allen Byte-Werte 0..255

NUM - umfassende Représentation von numerischen Daten in Wissenschaft, Technik, Wirtschaft
und in anderen Bereichen

DIF - schnelle Kompression von Datenreihen mit geringer Varianz

FPGA - Dateniibertragung mit Hardware bis anndhernd 100% der verfiigbaren Bandbreite
UNIT - umfassende Reprisentation von allen grundlegenden und abgeleiteten SI-Einheiten
TIME - Darstellung von Zeitskalen auf vielen Ebenen von Mikro- bis Makrokosmos

Die FTLight-Spezifikation entstand aus den speziellen Anforderungen im Bereich Radioastronomie
und SETTI (Search for ExtraTerrestrial Intelligence) auch mit der Vision, als Vorlage fiir eine
mogliche zukiinftige Kommunikation mit anderen Zivilisation (mdglichen kosmischen Nachbarn)
dienen zu konnen.

Review der FTLight-Spezifikation durch KI-Systeme

Die FTLight-Spezifikation mit dem Stand von 2025-04-05 wurde von 7 KI-Systemen auf logische
Konsistenz iiberpriift und es wurde weiterhin um Vorschlige fiir Modifikationen und Erweiterungen
zur weiteren Verbesserung der Anwendbarkeit gebeten:

¢ Claude 4.5 Reasoning
,Die FTLight-Spezifikation ist ein ambitioniertes und detailliertes Datenprotokoll, das darauf

abzielt, die Einschrankungen traditioneller Datenformate zu iiberwinden, insbesondere im
Kontext grof3er, hierarchisch organisierter astronomischer Datenmengen. Die Spezifikation zeigt
eine hohe Detailtiefe, die bis auf Bit-Ebene geht, was fiir die Implementierung auf Hardware
(z.B. FPGAs) entscheidend ist. Insgesamt ist die FTLight-Spezifikation ein vielversprechender
Ansatz, um die Herausforderungen der modernen Datenverarbeitung zu meistern. Die detaillierte
Ausarbeitung und der Fokus auf Effizienz und Hardwarenéhe sind klare Starken.*

* DeepSeek R1
,Das FTLight-Protokoll ist ein beeindruckendes, umfassendes und in sich stimmiges Konzept.

Die Details zu Bits, Bytes und Zeichenkodierungen sind prazise, und die {ibergeordneten
Architekturprinzipien (Hierarchie, Effizienz, Langzeitarchivierung) sind durchweg erkennbar.
Die logische Struktur ist solide.*

¢ Gemini 2.5 Thinking
,» Die FTLight Spezifikation ist ein sehr durchdachtes und umfassendes Dokument, das die
Herausforderungen der Datenhaltung in komplexen und hochleistungsfahigen Umgebungen
adressiert. Die detaillierte Beschreibung bis auf Bit-Ebene ist beeindruckend und essenziell fiir
die angestrebte Effizienz und Hardware-Implementierung.
Die Vision, dass Hardware an das Protokoll angepasst wird, anstatt umgekehrt, ist mutig und
notwendig, um die Grenzen traditioneller Ansitze zu iiberwinden. FTLight konnte tatséchlich
eine Blaupause fiir einen zukiinftigen Standard sein.*

* GPT-40
,» Die FTLight Spezifikation ist sehr ambitioniert und versucht, die Grenzen traditioneller
Datenprotokolle zu iiberwinden, insbesondere in Bezug auf Hierarchie, Skalierbarkeit und
Effizienz. Die Idee, Datenformate zu entwickeln, die nicht hardwareoptimiert sind, sondern
Hardware erfordern, die sie optimal unterstiitzt, ist innovativ und zukunftsweisend. Die
Detailtiefe bis auf Bit-Ebene ist beeindruckend und zeugt von einem tiefen Verstindnis der
Materie.*

e GPT-5.1 Thinking
,Die FTLight Spezifikation ist ein ambitioniertes und detailliertes Dokument, das versucht, die

Einschrankungen traditioneller Datenprotokolle zu iiberwinden. Die ehrgeizige Zielsetzung
(unbegrenzte Grofle, hocheffiziente bindre Darstellung, Langzeitarchivierung hierarchischer
Daten, insbesondere fiir die Radioastronomie) bildet eine starke Grundlage fiir das Design.

* Grok 4.1 Reasoning
,»Die FTLight-Spezifikation ist ein bemerkenswert detailliertes und durchdachtes Dokument. Die

grundlegenden Designprinzipien sind logisch konsistent und adressieren die angefiihrten
Probleme traditioneller Datenprotokolle wirkungsvoll. Die Stirken liegen in der konsequenten
Verfolgung von Hierarchie ohne Beschrinkung, hoher Effizienz durch spezielle Bindrformate
und der Unterstiitzung von Langzeitarchivierung und Versionsverwaltung.*

* Perplexity Reasoning
,, Die FTLight-Spezifikation legt ein solides Fundament fiir ein leistungsfahiges und flexibles

Datenprotokoll. Die Stirke liegt in ihrem ganzheitlichen Ansatz und dem Fokus auf Effizienz
und Langzeitstabilitét.

https://ftlightapp.eu/pdf/ai_review/Claude_4.5.pdf
https://ftlightapp.eu/pdf/ai_review/DeepSeek_R1.pdf
https://ftlightapp.eu/pdf/ai_review/Gemini_2.5.pdf
https://ftlightapp.eu/pdf/ai_review/GPT_4o.pdf
https://ftlightapp.eu/pdf/ai_review/GPT_5.1.pdf
https://ftlightapp.eu/pdf/ai_review/Grok_4.1.pdf
https://ftlightapp.eu/pdf/ai_review/Perplexity.pdf

Zielstellung

Die FTLight File/Stream-Datenstruktur wurde mit dem Ziel entworfen, die Sammlung und den
Austausch grofler Datenmengen zu unterstiitzen sowie den Zugriff auf einzelne Bestandteile bis
hinunter zu den kleinsten Detailinformationen zu erméglichen.

Ein spezieller Bedarf fiir den Umgang mit groen Datenvolumen besteht insbesondere im Bereich
Radioastronomie, zum Beispiel wenn die Datenstrome von verteilten Antennenstandorten
zusammengefiihrt werden sollen, um alle Anlagen zu einem integrierten Antennenkomplex zu
verbinden, so wie dies fiir das Generieren von Himmelsansichten mit Interferometer-Netzwerken
der Fall ist.

Obwohl diese Spezifikation auf die besonderen Anforderungen von Interferometer-Netzwerken
ausgelegt ist, so ist sie dariiber hinaus auch fiir andere Zusammenschaltungen von Computern
anwendbar, um diese in integrierter Weise zusammenarbeiten zu lassen.

Die FTLight Software steht als OpenSource-Spezifikation fiir die Anwendung in Projekten zur
Verfiigung, dhnlich zu Protokollfestlegungen wie HTML, XML oder GigE Vision:

HTML - Content-Darstellung in Internet-Browsern
XML - Speichern von Dokumenten und fiir Informationen in anderen Anwendungen

GigE Vision - Streamen von Bildern und Steuerfunktionen bei Digitalkameras

Einfithrung

In der gegenwirtigen Computermethodologie ist das Schichtenmodell weit verbreitet, um
Computersysteme miteinander zu verbinden. Schichtenmodell bedeutet das Umhiillen von zu
transportierenden Informationspaketen mit Zusatzinformationen, zum Beispiel wo die Information
herkommt, wo sie hingeht, welchen Kategorien sie angehort und anderen. Das so entstehende
Datenpaket ist moglicherweise in ein libergeordnetes Datenpaket eingebettet, welches den gleichen
Zweck verfolgt, lediglich auf einer hoheren Ebene. Das entstehende Datenpaket kann wiederum von
einem ndchsten Datenpaket umbhiillt sein, und so weiter.

In der Regel werden notwendige Steuerinformationen im Vorspann (Header) eines Datenpaketes
abgelegt, wahrend die zu transportierende Information im Hauptteil des Datenpaketes (body)
eingefiigt wird. Weiterhin konnen in einem Nachsatz (Trailer) weitere Informationen enthalten sein,
welche zum Beispiel zur Sicherstellung der Datenintegritdt von Bedeutung sind. Die Struktur des
endgiiltigen Datenpaketes, welches effektiv iiber den Verbindungskanal iibertragen wird, kann somit
sehr komplex werden und der Overhead kann dementsprechend grof3 sein:

Vorspannl Vorspann2 ... Vorspann N (effektive Information) Nachsatz N ... Nachsatz2 Nachsatz1

Ein Vorteil des Schichtenmodells ist offensichtlich, dass die einzelnen Schichten unabhéngig
voneinander sind und dass sie separat implementiert werden konnen. Weiterhin konnen geeignete
Kombinationen von Transportschichten benutzt werden, um Informationen zwischen beliebigen
heterogenen Systemen auszutauschen.

Andererseits erhoht jede Transportschicht den Umfang der zu iibertragenden Information und die
Forderung nach unabhidngigen Schichten macht es nahezu unmdoglich, Transportoptimierungen iiber
mehrere Schichten hinweg durchzufiihren. In einem extremen Fall ergab die Analyse eines
Datenstromes, welcher Tabellen-artige Daten mit mehreren tausend Eintrdgen transportierte, dass
der resultierende Overhead bei Anwendung des SOAP-Protokolls 95% betrug und nur 5%
Nutzdaten im Vergleich zur bindren Représentation der gleichen Daten iibertragen wurden.

Es sei erwihnt, dass sich das SOAP-Protokoll sehr gut fiir die Ubertragung beliebig strukturierter
Daten eignet, was bei anderen Protokollen oft nicht der Fall ist. Unter existierenden Protokollen
musste daher in der Regel fiir einen konkreten Einsatzfall nach einem Kompromiss zwischen
Effektivitit der Ubertragung und Mdglichkeiten strukturierter Datenreprisentation gesucht werden.

Die FTLight-Spezifikation verfolgt das Ziel, das Beste aus beiden Welten miteinander zu verbinden,
also zum einen bei der Speicherung und Ubertragung hoch effektiv zu sein und andererseits beliebig
strukturierte Daten abbilden zu konnen. Hinzu kommen weitere Eigenschaften im Zusammenhang
mit der Notwendigkeit des Umgangs mit beliebig groen Datenvolumen.

Ein weiteres Ziel besteht in der Unabhéngigkeit von jeglichen Transportschichten, welche den
Informationsfluss zwischen Computern steuern. Fiir einen erfolgreichen Datenaustausch sollte es
geniigen, eine Verbindung auf der Basis von IP-Services zu haben, welche das Spezifizieren des
Empfingers der Information ermoglichen. Alternativ ist es moglich, auch jede andere Kopplung,
wie zum Beispiel serielle Verbindungen fiir einen FTLight-basierten Informationsaustausch zu
verwenden. Die Implementierung dieser Zielstellung wird eine breite Anwendung in heterogenen
Umgebungen ermdglichen und gleichzeitig stellt dies eine gute Basis fiir sorgféltige und
tiefgehende Transportoptimierungen dar.

Spezielle Aufmerksamkeit muss der Gesamtsignallaufzeit gewidmet werden die entsteht, wenn ein
System ein Datenpaket an ein zweites System sendet und wenn dieses eine Antwort an das erste
System zuriicksendet. Je mehr Signalliufe fiir das regulire Ubertragen von kurzen Informationen
erforderlich sind, desto mehr Bedeutung kommt dieser Frage zu. Im Falle von extremen
Signallaufzeiten, wie sie zum Beispiel bei der Kommunikation von Weltraumsonden mit
Bodenstationen auftreten, steht maximal ein kompletter Signallauf fiir das Ubertragen von
Informationen zur Verfiigung. Alle Datenprotokolle, welche mehrere Signalldufe bendtigen, sind in
diesem Fall nutzlos und scheiden fiir die Anwendung aus.

Kurz zusammen gefasst, besteht das Ziel dieser Spezifikation in einer eindeutigen selbsterkldrenden
hierarchischen Datenstruktur, welche mit hochster Effektivitit zwischen einem Sender und einem
Empfinger iibertragen werden kann.

Fallstudien

A — Datenreihe

Eine der einfachsten Datenstrukturen wird durch eine einzelne Messwertspalte dargestellt:
2602

2595

2594

Der wesentliche Nachteil einer einzelnen Messwertspalte ist das Fehlen jeglicher Informationen
iiber Herkunft und Bedeutung der Daten sowie die fehlende MaBeinheit fiir die Zahlen.

B — Datensatz mit Zeitstempel

Ein Vorspann (Header) sowie Zeitstempel liefern bereits mehr Informationen iiber die Messwerte:

Zelt Flux Temperatur
[Sekunden seit 1.1.1970] [Jy] [°Cl
1073217600.370 2602 -2.4

1073217600.390 2595 -2.4

1073217600.410 2594 -2.3

Mit Header-Informationen und Zeitstempeln wird die Bedeutung der Messwerte bereits deutlicher.
Jedoch fehlen auch in diesem Fall Informationen iiber die beobachtete Radioquelle sowie
Informationen zur verwendeten Messausriistung.

C — Strukturierte Information

Eine Informationsdarstellung in strukturierter Weise klért alle Eigenschaften der Messwertdaten bis
hin zu den kleinsten Details:

EKD@JO63rx Dambeck.RSpectro, 1073217600

,Antenne, Parabolspiegel 90cm

,Azimut:Grad, 0

,Elevation:Grad, 15

, Frequenz:GHz,10.600

,Bandbreite:kHz, 250

0:Zeit,Flux, Temperatur

[Sekunden seit 1.1.19707, [Jy],[°C],@

1073217600.370,2602,-2.4,1073217600.590

1073217600.390,2595,-2.4,1073217600.615

1073217600.410,2594,-2.3,1073217600.640

Der obenstehende strukturierte Informationsblock erweitert die vorherige Messwertdarstellung mit
Zeitstempeln um beschreibende Zusatzinformationen (Metainformationen), welche zum Beispiel
Auskunft iiber den Entstehungszeitpunkt des Datensatzes (Erfassungszeit / 1.Spalte, Speicherzeit /
letzte Spalte) sowie die benutzte Spezifikation geben. Weiterhin werden der Operator, der Messort
sowie die verwendete Messausriistung mittels Schliissel (EKD@JO63rx_Dambeck.RSpectro)

angegeben, ebenso die Beobachtungsdetails wie Antenne, Azimut, Elevation, Frequenz, Bandbreite.

Bildung von strukturierten Informationen

Ein gebriuchlicher Weg fiir das Erzeugen von Strukturen bei einzelnen Informationen ist das Bilden
von geordneten Informationsmengen, wodurch jeder einzelnen Information im Prinzip eine
Reihenfolgenummer zugewiesen wird:

[0:1073217600, 1l:Antenne, 2:Azimut, 3:Elevation, 4:Frequenz, 5:Bandbreite, 6:Zeit,
7:Flux, 8: Temperatur]

Anschlieend konnen alle Einzelinformationen sowohl durch ihre Reihenfolgenummer als auch
durch den von ihnen repréisentierten Wert referenziert werden, zum Beispiel Nummer “1:” ist
gleichbedeutend mit “Antenne”.

Grundsatzlich gibt es fiir die soeben beschriebenen Informationsmengen zwei Mdglichkeiten zu
deren Erweiterung, zum einen in der Gro3e und zum anderen in der Tiefe. Eine Erweiterung der
GrofBe bedeutet, dass der Informationsmenge weitere Elemente hinzugefiigt werden. Eine
Erweiterung der Strukturtiefe hingegen bedeutet, dass neue Informationsmengen gebildet und diese
einem Element der bestehenden Menge zugeordnet werden.

Beispiel: [0: 1073217600, .. 4:Frequenz, ..]
|

| [0:GHz, 1:10.600]
Die Erweiterung von Grofle und Tiefe geordneter Informationsmengen fiihrt zu hierarchischen
Datenstrukturen. Das Adressieren eines Elementes innerhalb der hierarchischen Datenstruktur
erfordert das Aufzdhlen aller libergeordneten Bestandteile dieser Struktur, welche somit den Pfad
von einem obersten Element bis zum adressierten Element darstellen. Dabei konnen die

libergeordneten Elemente sowohl mittels ihrer Werte als auch mit ihren Ordnungsnummern, welche
thnen in den jeweiligen geordneten Datenmengen zugeteilt wurden, referenziert werden.

Untenstehend ist ein Vergleich aufgelistet, welcher den Pfad aller Elemente der zuvor aufgefiihrten
Beispieldatenstruktur einmal als Folge von Ordnungsnummern auf der linken Seite und zum
anderen die Werte aller Elemente auf der rechten Seite zeigt:

0 EKD@JO63rx Dambeck.RSpectro
0-0 1073217600

0-1 Antenne

0-1-0 Parabolspiegel 90cm
0-2 Azimut

0-2-0 Grad

0-2-1 0

0-3 Elevation

0-3-0 Grad

0-3-1 15

0-4 Frequenz

0-4-0 GHz

0-4-1 10.600

0-5 Bandbreite

0-5-0 kHz

0-5-1 250

0-6 Zeit

0-6-0 [Sekunden seit 1.1.1970]
0-6-0-0 1073217600.370
0-6-0-1 1073217600.390
0-6-0-2 1073217600.410
0-7 Flux

0-7-0 [Jy]

0-7-0-0 2602

0-7-0-1 2595

0-7-0-2 2594

0-8 Temperatur

0-8-0 [°C]

0-8-0-0 -2.4

0-8-0-1 -2.4

0-8-0-2 -2.3

mailto:EKD@jo63rx_dambeck.rspectro

Abbildung strukturierter Informationen in einem File/Stream

Entwurfsziele

Unter verschiedenen Mdglichkeiten zur Abbildung von strukturierten Informationen in einem File/
Stream hat eine solche Losung den Vorrang, welche bei vorgegebener Informationsmenge das
geringste Datenvolumen fiir das File/ den Stream ergibt. Daher werden explizite Strukturelemente
wie zum Beispiel Tags in XML-Dateien durch implizite Regeln ersetzt werden, welche in der
iiberwiegenden Mehrzahl der Félle ohne explizite Strukturelemente auskommen. In den
verbleibenden Fillen wird die Strukturinformation in der zuvor dargestellten kurzen Form als Folge
von Reihenfolgenummern hinzugefiigt.

Zusitzlich zu den bereits aufgefiihrten Anforderungen besteht ein weiteres Entwurfsziel darin, dass
die resultierenden FTLight Files/Streams lesbar dargestellt und einzelne Informationselemente
mittels Texteditor angepasst werden konnen.

File/Stream-Struktur

Ein File/Stream wird aus 8-Bit-Werten (Bytes) erzeugt, welche den Wertevorrat von 0 bis 255
darstellen. Einige ASCII-Zeichen, wie zum Beispiel 13 (CR-Wagenriicklauf) und 10 (LF-
Zeilenschaltung) werden zum Strukturieren der Dokumente verwendet, wahrend die Mehrzahl der
Zeichen fiir die Darstellung von Informationen verwendet wird.

Zeilen innerhalb eines Files/Streams

Die oberste Strukturebene einer File/Stream-Struktur (Zeile) wird durch eine Zeilenschaltung
(CR+LF) erzeugt. Innerhalb einer Zeile sorgen spezielle Trennnzeichen fiir die Einteilung in
einzelne Informationselemente.

Informationselemente innerhalb einer Zeile

Fiir die Einteilung einer Zeile in Informationselemente finden vier verschiedene Trennzeichen
Verwendung:

44 (Komma) - Erweiterung von Pfad oder Informationsmenge, nédchstes
Informationselement ist Text oder numerisch

59 (Semikolon) - Erweiterung von Pfad oder Informationsmenge, nédchstes
Informationselement ist bindr oder speziell

58 (Doppelpunkt) - Neubeginn einer Informationsmenge (auf einem Pfad), néchstes
Informationselement ist Text oder numerisch

61 (Gleichheitszeichen) - Neubeginn einer Informationsmenge (auf einem Pfad), néchstes
Informationselement ist bindr oder speziell

Die Erweiterungselemente (Komma, Semikolon) trennen, beginnend am Zeilenanfang, zunéchst
Pfadbestandteile voneinander, solange bis in der Zeile ein Startelement fiir den Neubeginn einer
Informationsmenge (Doppelpunkt, Gleichheitszeichen) auftritt. Ab diesem Startelement werden von
den gleichen Erweiterungselementen (Komma, Semikolon) Informationselemente auf einer Ebene
der Hierarchie getrennt. Dies entspricht einer Aufzdhlung von Elementen auf dem aktuellen Pfad.

Beispiel:
Frequenz:GHz,10.600

entspricht folgender Struktur:

0 Frequenz
0-0 GHz
0-1 10.600

Achtung: Die Doppelbedeutung der Erweiterungselemente muss bei der Interpretation von FTLight
Files/Streams beachtet werden, um die Struktur der Informationen korrekt zu rekonstruieren. Eine
Reduktion der Strukturelemente durch Doppelbelegung stellt keine Einschrinkung bei der Bildung
von Informationsstrukturen dar. Sie ermdglicht jedoch das Auslassen der nicht druckbaren Zeichen
0..31 sowie das Reservieren von 216 Zeichen fiir das Kodieren von Binédrinformationen (FTL).

Statusabhéngige Steuerzeichen

Eine von einem Status abhidngige Bedeutung von Steuerzeichen erzeugt in der Regel eine hohe
Komplexitit bei der Verarbeitung von Datenstromen. Im Sinne einer hoheren Robustheit beim
Parsen der Daten wird daher in der Regel auf eine Mehrfachbedeutung von Steuerzeichen
verzichtet.

In der vorliegenden FTLight-Spezifikation liess sich eine Doppelbedeutung aufgrund der
erschopften Codes 0..255 durch die Priorititen des Designs nicht vermeiden und es wird daher
bewusst mit einer vom Status (Pfad oder Informationsmenge) abhidngigen Bedeutung der
Steuerzeichen Komma und Semikolon gearbeitet.

Prioritéiten beim Design von FTLight
1. Hohe Entropie (geringe Redundanz)

2. Reservieren von 216 Zeichen als Symbole fiir das Kodieren von Bindrinformationen mit hoher
Effektivitit (97%) im FTL-Format

3. Auslassen der nicht druckbaren Zeichen 0..31, um FTLight-Daten sowohl in einem Texteditor
anschauen und &ndern zu konnen als auch in Tabellenprogramme zu importieren, Ausnahme
sind CR (13) und LF (10) fiir die Zeilenschaltung in Texteditoren und beim Importieren

4. Konzeptionell unbegrenzte Tiefe und GroBe von hierarchischen Datenstrukturen sowie von
Datenelementen innerhalb der hierarchischen Strukturen (reale Begrenzungen entstehen erst
durch Grenzen bei den Ressourcen welche die Datenstrome verarbeiten)

Duplizierte Informationselemente in aufeinanderfolgenden Zeilen

Sobald ein Informationselement an gleicher Stelle in einer nachfolgenden Zeile auftritt so wird
dieses einfach weggelassen:

Beispiel:

EKD@JO63rx Dambeck.RSpectro, 1073217600

EKDE@JO63rx Dambeck.RSpectro,Antenne, Parabolspiegel 90cm

Ist gleichbedeutend mit:

EKDE@JO63rx Dambeck.RSpectro, 1073217600

,Antenne, Parabolspiegel 90cm

und entspricht in beiden Fillen der folgenden Datenstruktur:

EKD@JO63rx_Dambeck.RSpectro
1073217600

Antenne
-1-0 Parabolspiegel 90cm

mailto:EKD@jo63rx_dambeck.rspectro

Vergroflerung einer Informationsmenge durch eine Folgezeile

Das erste unterschiedliche Pfadelement in einer Folgezeile erweitert die Informationsmenge auf der
entsprechenden Ebene:

Beispiel:
EKD@JO63rx Dambeck.RSpectro,1073217600
,Antenne, Parabolspiegel 90cm

Die erste Zeile gibt folgenden Pfad vor:

0 EKD@JO63rx Dambeck.RSpectro
0-0 1073217600

wihrend die zweite Zeile die Informationsmenge mit dem Element “1073217600” um ein neues
Element “Antenne” erweitert:

0-1 Antenne
0-1-0 Parabolspiegel 90cm

Verwalten eines aktuellen Pfades

Wenn eine Zeile einen Pfad spezifiziert so wird dieser zum aktuellen Pfad. Falls nachfolgende
Zeilen ohne explizite Formatkennzeichnung gleich mit Text oder einem bindren oder numerischen
Element beginnen dann bleibt der vorherige Pfad erhalten und kommt als aktueller Pfad zur
Anwendung.

Beispiel:

EKD@JO63rx Dambeck.RSpectro:Zeit, Flux, Temperatur

Ist gleichbedeutend mit:

EKDE@JO63rx Dambeck.RSpectro

Zeit,Flux, Temperatur

und auch mit:

EKDE@JO63rx Dambeck.RSpectro

0:Zeit,Flux, Temperatur

Und entspricht in allen Féllen der folgenden Datenstruktur:

EKD@JO63rx_Dambeck.RSpectro
Zeit
Flux
Temperatur

coo o
N O

Das “EKDQJO63rx_Dambeck .RSpectro”-Element wird als Pfadursprung (Root) erkannt da es
ein ,@’-Zeichen enthélt, so wie es bei ,,Datentypen* definiert wird.

Verwalten einer iibergeordneten (Parent-)Informationsmenge

Die auf dem aktuellen Pfad neu erzeugten Elemente einer Informationsmenge werden zur
iibergeordneten (Parent-) Informationsmenge fiir nachfolgende synchrone Schreiboperationen.

Beispiel:

EKDE@JO63rx Dambeck.RSpectro
Zeit,Flux, Temperatur

Die neu erzeugten Elemente [Zeit,Flux, Temperatur] der Informationsmenge werden zur
iibergeordneten Informationsmenge auf dem aktuellen Pfad [EKD@JO63rx Dambeck.RSpectro].

mailto:EKD@jo63rx_dambeck.rspectro

Synchrone Schreiboperationen

Oft bestehen Datensammlungen aus mehreren Spalten. Das synchrone Schreiben unterstiitzt das
Hinzufiigen eines weiteren Datensatzes in solch einer Datensammlung mittels einer Zeile. Die
Elemente dieser Zeile erweitern die entsprechenden Informationsmengen, welche den Elementen
der libergeordneten (Parent-)Informationsmenge als untergeordnete (Child-)Informationsmengen
zugeordnet sind, solange nachfolgende Zeilen ohne explizite Formatkennzeichnung gleich mit Text
oder einem bindren oder numerischen Element beginnen. Dies entspricht dem Hinzufiigen einer
weiteren, untergeordneten Uberschriftenzeile in einer Tabelle.

Sehr haufig erfolgen bei Tabellendaten anschlieBend mehrere synchrone Schreiboperationen ohne
Wechsel der iibergeordneten (Parent-) Informationsmenge (der Header- oder Uberschriftenzeile).
Falls eine Informationsmenge zu so einer neuen feststehenden (Parent-) Informationsmenge
werden soll, dann wird der Zeile, welche diese Elemente enthilt, ein einzelnes ,@’-Zeichen als
letztes Element der Zeile nachgestellt. Unterhalb des '@'-Zeichens (in der Child-
Informationsmenge) werden optional die Systemzeit des Speicherns im gleichen Format wie der
Zeitstempel am Zeilenanfang und zusétzlich optional die Reihenfolgenummer jedes Datensatzes
beginnend mit 1 als néchstes Element nach dem Zeitstempel eingetragen.

Beispiel:

EKD@JO63rx Dambeck.RSpectro

Zeit,Flux, Temperatur

[Sekunden seit 1.1.19701], [Jy],[°C],@

Die Elemente der dritten Zeile werden den Informationsmengen zugeordnet, welche mit den
Elementen der zweiten Zeile verkniipft sind wéihrend sie gleichzeitig die Rolle der iibergeordneten
(Parent-) Informationsmenge fiir nachfolgende Zeilen {ibernehmen. Die Datenstruktur sieht daher
folgendermallen aus:

0 EKD@JO63rx_Dambeck .RSpectro
0-0 Zeit

0-0-0 [Sekunden seit 1.1.1970]

0-1 Flux

0-1-0 [Jy]

0-2 Temperatur

0-2-0 [°C]

0-3 <leer>

0-3-0 @

Das Hinzufiigen von Datensétzen zum vorherigen Beispiel fiillt die Tabelle mit Daten:
Beispiel:

EKDE@JO63rx Dambeck.RSpectro

Zeit,Flux, Temperatur

[Sekunden seit 1.1.19701], [Jy], [°C],@
1073217600.370,2602,-2.4,1073217600.590,1
1073217600.390,2595,-2.4,1073217600.615,2
1073217600.410,2594,-2.3,1073217600.640, 3

Insgesamt fiihrt dies zur folgenden Datenstruktur:

EKD@JO63rx Dambeck.RSpectro
Zeit

0

0-0

0-0-0 [Sekunden seit 1.1.1970]
0-0-0-0 1073217600.370

0-0-0-1 1073217600.390

0-0-0-2 1073217600.410

0-1 Flux

0-1-0 [Jy]

0-1-0-0 2602

0-1-0-1 2595

0-1-0-2 2594

0-2 Temperatur

0-2-0 [°C]

0-2-0-0 -2.4

0-2-0-1 -2.4

0-2-0-2 -2.3

0-3 <leer>

0-3-0 @

0-3-0-0 1073217600.590
0-3-0-1 1073217600.615
0-3-0-2 1073217600.640
0-4 <leer>

0-4-0 <leer>

0-4-0-0 1

0-4-0-1 2

0-4-0-2 3

Fiillen von Tabellenspalten mit formatierten Arrays

Beim Fiillen von Tabellenspalten wird in der Regel das Format der Parent-Zeile auf die
untergeordneten Child-Zeilen iibertragen soweit keine anderen Formatfestlegungen erfolgen. Wenn
zum Beispiel in der Parent-Zeile Angaben zur Skalierung im Bindrformat erfolgen dann erhalten
alle Werte der untergeordneten Tabellenzeilen ebenfalls das Binédrformat.

Tabellendaten konnen auch als Array in einem der Formate MCL, FTL, TXL oder DIF in die Child-
Zeilen eingetragen werden indem eine Array-Formatdefinition in die erste Zeile der Tabelle
eingetragen wird. Die Elemente der ersten Dimension des Arrays werden dadurch fortlaufend den
Spalten der Tabelle zugeordnet. Mit einer weiteren Formatdefinition erfolgt die Zuordnung zu den
nachfolgenden Tabellenspalten im Anschluss an die bereits zugeteilten Spalten.

Die Verwendung von Arrays kann vorteilhaft die Datenmenge durch Wegfall der Separatoren
zwischen den Elementen einer Zeile und am Zeilenende verringern. Bei Anwendung des DIF
Formates ergibt sich weiterhin in der Regel eine Reduktion der Datenmenge durch
Datenkompression.

Das Schreiben von Tabellendaten erfolgt zeilenweise. Wenn die erste Zeile der Tabelle mehrere
Array-Formatdefinitionen enthdlt dann werden die Zeilen von den einzelnen Arrays zu jeweils einer
Tabellenzeile zusammengefiigt.

Volatiles Synchronschreiben

Wenn Datensétze lediglich einen Augenblickswert besitzen und zum Beispiel nur zur dynamischen
Anzeige dienen, dann konnen sie als ,,volatil* eingestuft werden. In diesem Fall wird keine
Speicherung vorgenommen. Ein Beispiel wiire die Ubertragung der Uhrzeit, bei der es in der Regel
wenig sinnvoll wire, jeden neuen Sekundenwert zu speichern. Andererseits kann bei
Videoiibertragungen das Speichern des Datenstromes wegen des gro3en Speichervolumens, aus
Griinden einer geringen Relevanz oder aus rechtlichen Griinden nicht durchfiihrbar sein. Dennoch
wird es jedoch in der Regel technisch sinnvoll sein, eine begrenzte Anzahl zuriickliegender
Datensitze vorzuhalten, um diese z.B. bei Ubertragungsstdrungen neu iibertragen zu kénnen.

Die genannten Anforderungen werden durch einen Ringpuffer mit Speicherplitzen fiir N Datensitze
erflillt. Die Anzahl der Datensdtze im Ringpuffer kann 0 oder groBer sein und wird bei synchronen
Schreiboperationen im Feld nach dem '@'-Zeichen angegeben. Bei 0 erfolgt kein Vorhalten von
Datensétzen sondern ein direktes Uberschreiben der vorherigen Daten und der Ringpuffer ist in
diesem Fall nicht existent. Falls jedoch, so wie zuvor beschrieben, keine GroB3e des Ringpuffers
spezifiziert wurde dann werden alle Datensétze gespeichert.

Wenn alle Datensitze gespeichert werden (nur '@'), dann ist in der Regel kein Anfligen einer
Reihenfolgenummer bei den Datensétzen erforderlich, weil diese sich implizit aus der Datenstruktur
ergibt. Falls in diesem Fall unterhalb der '@'-Position nur ein Wert erscheint, dann wird dieser daher
als Systemzeitstempel des Speicherns im gleichen Format wie der Zeitstempel am Zeilenanfang
interpretiert. Bei Angabe der Grofe eines Ringpuffers und nur einem Wert unterhalb der '@'-
Position wird dies jedoch als Reihenfolgenummer des Speicherns im Ringpuffer interpretiert.

Beispiel fiir einen Ubertragungszeitpunkt mit Ringpuffer und Reihenfolgenummer:

EKD@JO63rx Dambeck.RSpectro

Zeit,Flux, Temperatur

[Sekunden seit 1.1.197071, [Jy],[°C],@,3

1073217600.410,2602,-2.4,129

1073217600.370,2595,-2.4,127

1073217600.390,2594,-2.3,128

Der Ringpuffer umfasst 3 Datensétze. Im ersten Datensatz befinden sich die zuletzt erfassten Daten.

Im Datensatz 2 liegen die éltesten Daten vor, welche als nédchstes tiberschrieben werden.

Wiederaufsetzen beim Synchronschreiben

Wenn ein Synchronschreiben nach dem Schreiben anderer Daten an einem vorherigen Punkt wieder
neu aufgesetzt werden soll, dann wird dazu im ersten Feld einer Zeile die Adresse des '@'-Zeichens
vom unterbrochenen Synchronschreiben und optional eine Ringpufferldnge angegeben. Zusitzlich
kann in einem weiteren Feld eine von 0 abweichende Position zum Fortsetzen des
Synchronschreibens angegeben werden, z.B.

0-3-0,3,130

setzt das Schreiben der obenstehenden Tabelle an Position 130 im dreizeiligen Ringpuffer fort.

Datentypen am Zeilenanfang

Das oberste Design-Ziel (hohe Entropie/geringe Redundanz) legt einen Verzicht auf einen
expliziten Datentyp am Anfang einer Zeile nahe, weil sich dort zu einem sehr groBBen Teil immer ein
Zeitstempel befindet.

Beim Schreiben auf einem aktuellen Pfad und allgemein beim synchronen Schreiben von
Datensitzen fehlt somit am Zeilenanfang eine Kennzeichnung fiir den Datentyp. Dieser leitet sich
daher implizit aus folgenden Regeln ab:

* beim synchronen Schreiben wird der Datentyp des iibergeordneten Elementes {ibernommen
» wenn kein synchrones Schreiben aktiv ist, dann stellt ein Adressformat eine Adresse dar

» wenn kein synchrones Schreiben aktiv ist, dann stellt ein numerisches Format eine Zahl dar
» wenn keiner der aufgefiihrten Fille zutrifft dann stellt der Feldinhalt einen Text dar

Aus den genannten Regeln leitet sich insbesondere die Einschrdnkung ab, dass ein binérer Inhalt am
Zeilenanfang nur beim synchronen Schreiben erkannt wird. Wenn dagegen ein bindrer Inhalt am
Zeilenanfang beim Schreiben einer Informationsmenge auf einem Pfad auftritt, dann muss eine
explizite Kennzeichnung des Datentyps erfolgen, z.B. durch Voranstellen einer Adresse fiir den
aktuellen Pfad, gefolgt von einem Gleichheitszeichen als Kennung fiir das Bindrformat.

Diese Kontextabhéngigkeit beim Herleiten des Datentypes fiihrt &hnlich wie bei den Trennzeichen
Komma und Semikolon zu einer hohen Komplexitit bei der Verarbeitung von FTLight-Daten,
welche zum Erreichen der genannten Design-Ziele bewusst in Kauf genommen wird. Beim
Erkennen von Bindrdaten am Zeilenanfang ohne synchrones Schreiben liegt daher ein Fehler vor.

Tabellen-Import

Die strukturierten Daten aus den vorherigen Beispielen kdnnen in ein Tabellenprogramm importiert
werden und fiihren zur nachfolgend gezeigten Ansicht. Somit wurde das Entwurfsziel erreicht, dass
die Anzeige von strukturierten Daten eines Files/Streams in lesbarer Form erfolgen kann. Weiterhin
sind alle Daten somit auch einer direkten Weiterverarbeitung in Tabellenform zugénglich:

EKD@JO63rx Dambeck.RSpectro

Zeit Flux Temperatur
[Sekunden seit 1.1.1970] [Jy] [°C] @
1073217600.370 2602 2.4 1073217600.590 1
1073217600.390 2595 2.4 1073217600.615 2

1073217600.410 2594 -2.3 1073217600.640 3

Vergleich von FTLight-Strukturen mit Verzeichnissen,
Registraturen und Datenbanken

Nach der Einflihrung von Informationsmengen kann die Frage auftauchen, welchen Unterschied es
zwischen FTLight-Informationsmengen und den damit zusammenhéngenden hierarchischen
Strukturen einerseits und den gut bekannten Informationsstrukturen wie Verzeichnissen in
Dateisystemen, Registraturen und Datenbanken andererseits gibt. Eine kurze Antwort wire, dass
mit der FTLight-Spezifikation kiinstliche Beschrankungen beseitigt werden, welche den anderen
genannten Datenstrukturen vorwiegend aus Performance-Griinden und zum Zweck eines effektiven
Ressourcen-Management auferlegt wurden.

Die FTLight-Spezifikation ist ebenfalls auf Performance und effektives Ressourcen-Management
ausgerichtet. Jedoch wird mit hochster Prioritét eine konzeptionelle Grenzenlosigkeit angestrebt.
Beschrinkungen werden erst dann sichtbar, wenn eine FTLight-Datei in ein Dateisystem
geschrieben wird oder wenn ein FTLight-Stream zwischen Computern tibertragen wird. Die in
solchen praktischen Anwendungen auftretenden Beschrankungen resultieren aus der endlichen
GroBe des zur Verfiigung stehenden Speicherplatzes beziehungsweise aus der begrenzten
Bandbreite des Ubertragungskanals zwischen Computern, der den FTLight-Stream iibertrigt.

Im folgenden werden einige Fallbeispiele betrachtet, wie die FTLight-Spezifikation Schranken
iiberwindet:

Verzeichnisse in Dateisystemen

Gewdhnlich werden von jedem Dateisystem Beschrankungen beziiglich der Gréf3e von
Pfadkomponenten sowie beziiglich der Zeichen gemacht, welche in Pfadkomponenten vorkommen
diirfen. Zusétzlich unterliegt oftmals die Gesamtlénge eines Pfades einer Beschriankung durch das
Dateisystem oder durch das Betriebssystem, welches das Dateisystem anwendet. Eine {ibliche
Beschrinkung fiir die Gesamtldnge eines Pfades ist zum Beispiel 1024 Byte, wobei solche Zeichen
wie Slash ,/’ oder Backslash ,\’ nicht innerhalb von Pfadkomponenten vorkommen diirfen.

Die genannten Beschrinkungen werden in der FTLight-Spezifikation {iberwunden. Die
Komponenten eines Pfades wie auch die Gesamtliange eines Pfades sind konzeptionell
unbeschrinkt. Weiterhin sind gleich zwei Datentypen verfiigbar (Text und Bindr), welche das
Erzeugen von Pfadkomponenten aus beliebigen 1-Byte-Zeichen 0..255 sowie auch aus beliebigen
Bit-Feldern als Bestandteil eines Pfades ermoglichen.

Registraturen

Grundsétzlich gibt es keine gro3en konzeptionellen Unterschiede zwischen einem Eintrag in einer
Registratur (z.B. Windows Registry) und einer Datei in einem Dateisystem auler zusétzlicher
Beschriankungen beziiglich der Grée von Eintrdgen in einer Registratur. Eine gemeinsame
Beschrinkung beider Strukturen besteht darin, dass auf einem gegebenen Pfad jeder Datei
beziehungsweise jedem Namen einer Registratur immer nur ein Inhalt zugewiesen werden kann.
Sobald mehrere Werte zugewiesen werden sollen muss die Struktur immer erst um eine neue Ebene
ergdnzt werden.

In einer Registratur wiirde die zusitzliche Ebene aus mehreren Eintrigen bestehen, wobei jeder
Eintrag einen eigenen eindeutigen Namen aufweisen muss. Anschlieend konnen die Werte den
Namen zugeordnet werden. Eine dquivalente Vorgehensweise in einem Dateisystem wére das
Anlegen von Dateien mit unterschiedlichen Dateierweiterungen (Extensions), zum Beispiel .exe fiir
ausfiihrbare Dateien und .ini fiir die Initialisierungsinformation wihrend die Dateinamen vor der

Extension gleich wiren. Dies wire jedoch nur eine Umgehungsldsung fiir die genannte
Beschriankung.

Die FTLight-Spezifikation {iberwindet die Einschrankung, dass einem Namen in einer Registratur
oder einem Dateinamen nur ein einziger Wert zugewiesen werden kann durch den Ansatz, dass
jedem Pfad eine konzeptionell unbegrenzte Menge von Informationselementen zugewiesen werden
kann. Das ermdglicht zum Beispiel das Verwalten aller Messwertdaten unter dem Namen der
Datenquelle, welche diese Werte generiert hat. Der Vorteil gegeniiber dem Abspeichern aller
Messwertdaten in einer Datei besteht darin, dass jeder einzelne Messwert ein eigenstindiges
Informationselement unter dem Dach einer gemeinsamen Spezifikation darstellt und dass somit
keine zusidtzlichen Regeln fiir das Schreiben/Lesen solcher Werte in/aus Dateien erforderlich sind.

Man kann die FTLight-Spezifikation somit als Vereinheitlichung der traditionellen Konzepte
von Pfad, Verzeichnis und Dateien mit den unterschiedlichsten Dateiformaten in einem
gemeinsamen Konzept ansehen, wo Informationsmengen mit anderen Informationsmengen
verkniipft werden mit der Absicht, unbeschrinkte hierarchische Informationsstrukturen zu
schaffen.

Datenbanken

Relationale Datenbanken sind in der Regel hoch-effektiv beim Verwalten von Tabellen-artigen
Daten, welche durch einen Satz von Regeln zwischen den Tabellen beschrieben werden konnen.
Dagegen sind sie fiir das Verwalten von hierarchisch organisierten Daten oftmals weniger gut
geeignet.

Die FTLight-Spezifikation erweitert das Konzept hierarchischer Datenstrukturen durch die
Fahigkeit, Tabellen-artige Daten in synchronisierten geordneten Informationsmengen zu verwalten,
zum Beispiel im Falle von Messwertdatenserien mit einem Zeitstempel als Schliissel von
Messwertdatensétzen.

Datentypen

Die folgenden Datentypen erlauben es, die Informationselemente in der jeweils zutreffendsten Art
darzustellen. Die Definition erfolgte so, dass ein Parser bei der Verarbeitung eines FTLight-Streams
die einzelnen Elemente eindeutig identifizieren kann:

» Text (Single-Byte-Zeichen von 0..255, unbegrenzte Anzahl)

» Zahlen (Alle Zahlenformate, die ausschlieBlich folgende Zeichen verwenden:
“0123456789-+.Ee XxAaBbCcDdF)

* Binér (Alle Bit-Felder, angefangen von Einzelbit bis zu unbegrenzter Bit-Anzahl)

Identifikator (enthilt Informationen zum Operator, dem Ort sowie zu einem Thema)

» Adresse (ermdglicht das Referenzieren von Elementen innerhalb eines Files/Streams
sowie das Herstellen von Verbindungen [Links])

Sonderzeichen

Die folgenden Zeichen haben eine spezielle Bedeutung innerhalb von FTLight Files/Streams und
miissen daher in allen Datentypen, wo Verwechselungen mdglich sind vermieden werden bzw. ihre
Sonderbedeutung muss mittels vorangestelltem Backslash entwertet werden.

* 10 (Zeilenschaltung) - Zeilentrenner

* 13 (Wagenriicklauf) - Zeilentrenner

* 44 (Komma) - Feldseparator

* 45 (Minuszeichen) - Adresselement

* 58 (Doppelpunkt) - Feldseparator

* 59 (Semikolon) - Feldseparator

* 61 (Gleichheitszeichen) - Feldseparator

* 64 (@ Zeichen) - Identifikator, Operator
* 96 (Back-Apostroph) - Anfrageoperator/,,.Leere” (QUERY, EMPTY)
» 127 (Loschen) - Loschoperator (DEL)
Textdatentyp

Der Textdatentyp kann alle Einzelbyte-Zeichen von 0..255 darstellen. Fiir die Vermeidung von
Konflikten mit den Sonderzeichen miissen diese wie zuvor beschrieben in ihrer Sonderbedeutung
entwertet werden, was durch Voranstellen eines Backslash ‘\” bewirkt wird. Beim Verarbeiten eines
Textes muss das Backslash-Zeichen vor Sonderzeichen wieder entfernt werden.

Die Mdoglichkeit der Darstellung sdmtlicher Einzelbyte-Zeichen ermdglicht es grundsitzlich, mit
dem Textdatentyp beliebige Daten einschlielich Bindrdaten darzustellen. Jedoch sollte man sich
bewusst sein, dass Dateien mit dieser Darstellung moglicherweise nicht mit normalen Texteditoren
gedffnet werden kdnnen, weil sie unter anderem auch die Steuerzeichen (0..31) enthalten kdnnen.

Weiterhin kann bei angenommener Gleichverteilung aller Zeichen im Text durch das Hinzufligen
eines Backslash zu den Sonderzeichen insgesamt mit einer Effektivitit der Kodierung von etwa
96% gerechnet werden. Aus diesem Grunde sollte dem Binédrdatentyp der Vorrang gegeben werden,

welcher eine Effektivitit der Kodierung von 97% erreicht. Weiterhin werden mit dem Binédrdatentyp
alle Sonderzeichen (0..31) bereits vom Design her vermieden..

Beispiele:

Dies ist ein Beispiel fiir den Textdatentyp\: “mail\@server.com”.

Datentyp fiir Zahlendarstellung

Sobald ein als Text/Zahl deklariertes Feld ausschlieBlich die Zeichen “0123456789 -+ . Ee X xAa
B b CcDdF f’ enthilt wird es weiter analysiert, ob es einer giiltigen Zahlendarstellung entspricht.
Falls dies der Fall ist, dann wird das Feld in eine Zahl konvertiert. Die Linge einer Zahl unterliegt
keinerlei Beschrankungen.

Die folgenden Zahlendarstellungen werden akzeptiert:
« Integer — jede Kombination der Ziffern 0..9, z.B. 0, 10, 938776658832671414423574758
 FlieBkomma — zwei Integer-Zahlen, verbunden mit einem Punkt, z.B. 123.4, 0.56, .87, 543.
« Wissenschaftlich — FlieBkomma zuziiglich Exponent, z.B. 0.56E-2, 0.62¢e12, 4.283E+5
« Hexadezimal — ‘0x’ oder ‘0X’ gefolgt von Hexadezimalzeichen 0..9,A..F,a..f, z.B. 0x03FC

Arrays von Zahlen und Text

Fiir das Kodieren von Zahlen/Text-Arrays wird das Back-Apostroph (ASCII-Code 96) verwendet.
Wenn dieses in einem Zahlen/Text-Feld ohne Entwertung durch Backslash-Zeichen erscheint und
nicht direkt von einem Feldseparator gefolgt wird, dann leitet es ein Array von Zahlen/Text ein. Die
Anzahl der Back-Apostrophs steuert dabei die Ebene in den Array-Dimensionen, z.B:
EKD@JIN58nc.Array, 0

,Zahlen’1,2,3

,Text A,B,C

Das Array 'Zahlen'1,2,3" filhrt auf eine &dhnliche hierarchische Struktur wie bei Verwendung eines
Doppelpunktes 'Zahlen:1,2,3' zum Start einer neuen Informationsmenge, jedoch auf der néchst
tieferen untergeordneten Ebene. Weiterhin konnen mit dem Back-Apostroph im Unterschied zum
Doppelpunkt beliebig viele Ebenen von Array-Dimensionen durch die Anzahl der aufeinander
folgenden Back-Apostrophs adressiert werden, z.B. ein zweidimensionales Array:
EKD@JIN58nc.Array, 0

,Zahlen"1,2,3,4,5,6,°7,8,9

Obenstehend wird durch ein doppeltes Back-Apostroph ein zweidimensionales Array eingeleitet.
Anschliefend folgen drei eindimensionale Arrays, welche die Zeilen des zweidimensionalen Arrays
darstellen. Die Bereiche der Indizes ergeben sich jeweils aus der maximalen Anzahl von Elementen.

Die Verwendung des Back-Apostrophs (FQUERY/EMPTY-Operator) als Trennzeichen am Anfang
des Arrays ordnet das gesamte Array dem ,,Leere“-Index innerhalb der Informationsmenge zu, im
Gegensatz zu den iiblichen Indizes 0,1,..,N fiir alle anderen Elemente der Informationshierarchie.

Wenn eine Adressangabe von Back-Apostrophs eingeschlossen ist dann wird dies zur Anfrage nach
dem adressierten Element des Arrays, bzw. zur Anfrage nach dem adressierten Teil (Untermenge)
des vollstindigen Arrays, z.B.:

EKD@JN58nc.Array, Zahlen 2-1"

gibt nur das Element ,,8‘ von der Position 2-1 aus dem oben definierten Array zuriick, wéhrend
EKD@JN58nc.Array, Zahlen 1"

die Zeile 4,5,6 zuriick gibt.

Arrays unterschiedlicher Dimensionen an der gleichen Position beeinflussen sich gegenseitig nicht
und konnen daher unabhingig voneinander geschrieben und gelesen werden.

Binarer Datentyp (FTL)

Das Kodieren von Bindrdaten basiert auf einem Satz von FTLight-Symbolen, welche die Werte von
0..215 représentieren. Diese Symbole (0..215) werden in FTLight Files/Streams in solcher Weise
den verfiigbaren Zeichen (0..255) zugeordnet, dass kein Steuerzeichen (0..31) und keines der
festgelegten Sonderzeichen fiir die Darstellung eines Symbols benétigt wird.

Die Wandlung von Symbolen in erweiterte ASCII-Zeichen geschieht in folgender Weise:

Symbol =12 => Zeichen = 248 (vermeiden von 44 - Komma)

Symbol = 13 => Zeichen = 249 (vermeiden von 45 - Minuszeichen)
Symbol =26 => Zeichen =250 (vermeiden von 58 - Doppelpunkt)
Symbol =27 => Zeichen =251 (vermeiden von 59 - Semikolon)
Symbol =29 => Zeichen =252 (vermeiden von 61 - Gleichheitszeichen)
Symbol =32 => Zeichen = 253 (vermeiden von 64 - (@ Zeichen)
Symbol = 64 => Zeichen = 254 (vermeiden von 96 - Back Apostroph)
Symbol =95 => Zeichen = 255 (vermeiden von 127 - Loschen)

alle anderen => Zeichen = Symbol + 32
In der Gegenrichtung von einem Zeichen zum Symbol geschieht die Konvertierung wie folgt:

Zeichen 32..247

=> Symbol = Zeichen — 32

Zeichen 248 => Symbol = 12
Zeichen 249 => Symbol = 13
Zeichen 250 => Symbol =26
Zeichen 251 => Symbol =27
Zeichen 252 => Symbol = 29
Zeichen 253 => Symbol = 32
Zeichen 254 => Symbol = 64
Zeichen 255 => Symbol = 95

Vier aufeinanderfolgende Symbole aus einem Bindrdatenfeld werden mit einem Radix von 216 zu
einem 31-Bit-Feld kombiniert. Falls mehr als 31 Bits im Bindrdatenfeld enthalten sind dann wird
ein Vielfaches von 4 Zeichen fiir die Kodierung verwendet, bzw. es werden ein, zwei oder drei
Zeichen angefiigt, solange bis die Liange des Bit-Feldes erreicht ist. In dieser Weise konnen
Binérdaten beliebiger Lange wie z.B. auch Grafiken, Sound- und Videodateien kodiert werden.

Beispiel:
Das Binérdatenfeld ‘ABCD’ wird in folgende Symbole iibersetzt:
A=>65-32=33 B => 66-32=34 C=>67-32=35
Daraus ergibt sich fiir den Wert des Bit-Feldes:
(((33 ¥216 +34) *216) +35) * 216 + 36 = 334157868
was dquivalent zum folgenden Bit-Feld ist: 0010011111010101101100000101100

Das gewihlte Kodierschema représentiert ein 31-Bit-Feld durch vier Zeichen des erweiterten
ASCII-Zeichensatzes. Dies entspricht einer 31/32-Effizienz oder etwa 97% im Vergleich zum reinen
Binédrformat.

D => 68-32=36

Der verfiigbare Wertebereich fiir eine Gruppe von vier Symbolen entspricht
2164 - 1=12,176,782,335.

Im Vergleich zum, mit diesen Symbolen dargestellten, Maximalwert eines 31-Bit-Feldes von
2,147,483,647 existieren somit insgesamt 29,298,688 ungenutzte Kombinationen.

Offene Aufgabe:

Die Uberschusskombinationen bieten eine gute Gelegenheit fiir erweiterte Funktionen, wie z.B.
Moglichkeit fiir beliebige Bit-Zahlen, Kompression von zusammenhéngenden Null-Bit oder Eins-
Bit-Feldern sowie Kompression von sich wiederholenden komplexen Strukturen.

Zahlendarstellung im Binidrformat (NUM)

Beim Umgang mit Zahlen haben sich zweckmaéBige, lesbare Formen in Abhidngigkeit vom
Anwendungsfall herausgebildet, z.B. Integer-Zahlen fiir Zéhlvorgédnge oder die
Exponentialschreibweise im wissenschaftlichen Bereich mit einem Bedarf an effektiver Darstellung
auch von sehr gro3en oder sehr kleinen Zahlen. Diesen Anforderungen soll in FTLight durch eine
Definition von gdngigen Zahlenformaten entsprochen werden.

Das Reprisentieren von Zahlen erfordert die folgenden Elemente:
« Integer-Zahlen
« Negative Zahlen
« Briiche von Integer-Zahlen (rationale Zahlen)
« Exponent
« Basis zu einem Exponenten
« Negativer Exponent

Zunichst wird der Basistyp des Bindrformats (FTL) fiir das Kodieren beliebig grof3er Integer-
Zahlen verwendet. Das Back-Apostroph (96) wird anschlieBend zur Strukturierung eines
Binédrdatenfeldes in mehrere Komponenten entsprechend der Topologie nach folgendem Muster
verwendet:

FTL - Integer-Zahl, z.B. 123

'FTL - -FTL, negative Zahl (hier: Integer-Zahl), z.B. -123

FTL" -1/FTL, Bruch, z.B. 1/123

FTL1'FTL2 - FTL1 * FTL2, Produkt von Integer-Zahlen, z.B. 123*10=1230
FTL1'FTL2 - FTL1 / FTL2, Bruch von Integer-Zahlen, z.B. 123/10=12.3
FTL1'FTL2FTL3 - FTL1 * FTL2 exp FTL3, wissenschaftlich, z.B. 123E+4
FTL1'FTL2"'FTL3 - FTL1 * FTL2 exp -FTL3, wissenschaftlich, z.B. 123E-4

FTL1'FTL2'FTL3'FTL4 -FTL1/FTL2 * FTL3 exp FTL4, wissenschaftlich, 1.3E+4
FTLT'FTL2'FTL3'FTL4 -FTL1/FTL2 * FTL3 exp —FTL4, wissenschaftlich, 1.3E-4

Reprisentieren von Datentypen im Binidrformat (DTI ...)

Anforderungen

Es ist {iblich, dass jede Softwareanwendung ein spezifisches Datenformat verwendet, sobald Daten
persistent auf ein Speichermedium geschrieben werden bzw. wenn Daten von einer Instanz der
Anwendung zu einer zweiten Instanz der Anwendung iibertragen werden. Diese Datenformate
werden von Entwicklern einer Software basierend auf den gestellten Anforderungen in der Regel
derart festgelegt, dass die Daten in moglichst effizienter Weise iibertragen und gespeichert werden
konnen.

Oftmals treffen diese einmal erfolgten Festlegungen zu einem spéteren Zeitpunkt auf Hindernisse,
wenn die auf den urspriinglichen Anforderungen basierenden Formate fiir das Einfiihren neuer
Eigenschaften nicht mehr ausreichen und daher die Festlegungen erweitert oder eventuell auch
gedndert werden miissen. Vom Benutzerstandpunkt aus geht die Software dabei wihrend ihres
Lebenszyklus durch verschiedene Versionen, wobei die Vertraglichkeit der Datenformate von
aufeinanderfolgenden Softwareversionen eine der groflten Herausforderungen fiir die Entwickler
darstellt. In der Vergangenheit gab es dabei oftmals keine Moglichkeit fiir eine Riickwirts-
Kompatibilitdt, wodurch der einzige Ausweg im Festlegen eines neuen Datenformates bestand und
wo Forderungen nach Verarbeitbarkeit dlterer Formate durch geeignete Konverter geldst wurden.

Konzept

Obwohl die FTLight-Spezifikation ihrerseits als offener Container fiir das Speichern und
Ubertragen beliebiger Datenstrukturen in effizienter Weise entwickelt wurde, so kann es dennoch
sinnvoll sein, vorhandene Dateien durch einen FTLight-Container zu umschlieBen, z.B. um von der
flexiblen Metadaten-Darstellung in FTLight zu profitieren. Gleichzeitig konnen die mit
aufeinanderfolgenden Versionen in Zusammenhang stehenden Probleme transparent gelost werden,
indem die entsprechenden FTLight-Elemente wie eindeutige Identifikatoren und interne Referenzen
in Verbindung mit dem Update-Mechanismus zum Einsatz kommen. Weiterhin kann auch die
Einfiihrung unterschiedlicher Bindrformate empfehlenswert sein, wenn dadurch spezifische
Anforderungen wie z.B. zur Verarbeitungsgeschwindigkeit oder zur Datenkompression besser
gelost werden, als wie dies mit der standardméBigen FTLight-Reprédsentation von Bindrdaten der
Fall ist . Die folgenden Datenelemente gestatten es daher, andere Datenformate (extern zu FTLight)
zu kapseln wie auch die eingebauten Formateigenschaften in transparenter Weise zu erweitern.

Datentyp-Identifikator (DTI)

Die ersten vier FTLight-Symbole in einem bindren Datenfeld dienen als Datentyp-Identifikator.
Sobald ein Datentyp-Identifikator in einem bindren Datenfeld erkannte wurde wird dieser auch auf
alle untergeordneten Biniirdatenfelder iibertragen. Alle Datentyp-Identifikatoren werden als
little endian iibertragen.

Datentypen konnen kaskadiert werden, wie zum Beispiel DTI_UNIT und DTI_FTL. Im genannten
Fall wird mit DTI_UNIT eine Skalierung aller nachfolgenden Bindrwerte mit Bezug auf eine
physikalische Einheit festgelegt und DTI _FTL kann anschlieBend ein mehrdimensionales Array der
Werte definieren.

Ein Datentyp-Identifikator benutzt solche Kombinationen von FTLight-Symbolen, welche nicht
bereits zur Darstellung von 31-Bit-Feldern durch vier Zahlen mit einem Radix von 216 Verwendung
finden. Falls stattdessen die ersten vier Symbole bereits ein giiltiges 31-Bit-Datenfeld darstellen,
dann handelt es sich um ein herkémmliches bindres FTL-Datenfeld ohne Typinformation.

Die folgenden Datentyp-Identifikatoren sind basierend auf dem Maximalwert von
FTLmax =216"4 — 1 =2,176,782,335 absteigend definiert:

DTI FTLightOpen =FTLmax-0 =2,176,782,335 - Offenes Format mit FTLight-
Symbolen

DTI_FTLightWrap =FTLmax-1 =2,176,782,334 - Beliebiges Format mit FTL gekapselt

DTI_MCL =FTLmax -2 =2,176,782,333 - MCL-kodiertes Bitfeld-Array
DTI_FTL =FTLmax -3 =2,176,782,332 - FTL-kodiertes Bitfeld-Array
DTI_TXL =FTLmax -4 =2,176,782,331 - TXL-kodiertes String-Array
DTI_DIF =FTLmax -5 =2,176,782,330 - DIF-kodiertes Integer-Array
DTI_UNIT =FTLmax-6 =2,176,782,329 - FTL-kodierte physikalische Einheit
DTI_TIME =FTLmax -7 =2,176,782,328 - FTL-kodierte Zeiteinheit
DTI_TOKEN =FTLmax -8 =2,176,782,327 - Token fiir Cosmos-Kommunikation
DTI_LINK =FTLmax -9 =2,176,782,326 - Link auf lokal erreichbares Modul

Die Werte der Datentyp-Identifikatoren diirfen mit Riicksicht auf gespeicherte Daten NIEMALS
gedndert werden, weil andernfalls die Interpretation von gespeicherten Daten fehlschlagen kann.
Erweiterungen konnen jedoch je nach Bedarf erfolgen.

Typsteuerfelder (ControlX)

Ein Datentyp-Identifikator kann von Typsteuerfeldern gefolgt sein. Die Bedeutung der
Typsteuerfelder ist spezifisch und wird fiir jeden Typ separat beschrieben. Ein Steuerfeld ist eine
unbegrenzte Zeichenfolge, welche nach FTL-Regeln kodiert ist. Die Steuerfelder sind durch Back-
Apostroph (96) voneinander getrennt:

DTI_xxx'FTL(n) ControlX1"... ControlXn-1"DTI xxx(Binérdaten)

Das erste Steuerfeld enthélt jeweils die Gesamtanzahl aller Steuerfelder. Daher wurde es mit
FTL(n) = ControlX0 benannt. Das nach den Steuerfeldern folgende DTI xxx(Bindrdaten)-
Datenfeld enthilt die nach den Regeln des jeweiligen DTI-Datentyps kodierten Daten.

Falls das Zeichen nach dem Datentyp-Identifikator kein Back-Apostroph ist dann stellt der darauf
folgende Binédrdatenblock ein homogenes, eindimensionales Bit- oder Integer-Feld vom DTI xxx-
Datentyp dar, ohne weitere Strukturinformationen, zumindest keine, die dem FTLight-Container
bekannt wéren.

DTI_FTLightOpen-Datentyp

Der DTI_FTLightOpen-Datentyp stellt eine Einladung zum Entwickeln weiterer hochspezifischer
Datenformate dar, welche auf der Basis des Radix-216-Schemas und unter ausschlieSlicher
Verwendung von zuldssigen FTLight-Zeichen arbeiten. Es wird empfohlen, dass eine Beschreibung
des jeweiligen Datenformats im Internet erfolgt und dass eine URL zu dieser Beschreibung in
ControlX1 = URL gegeben wird:

DTI_FTLightOpen FTL(n) FTL(URL)"... ControlXn-1"DTI_FTLightOpen(Binardaten)

Die Anzahl der Steuerfelder, welche auf die URL folgen, ist spezifisch fiir das jeweilige
Datenformat. Falls nach dem DTI FTLightOpen-Identifikator kein Back-Apostroph folgt dann gilt
fiir das sich anschlieBende Bindrdatenfeld eine Kodierung im FTL-Format.

DTI_FTLightWrap-Datentyp

Der DTI_FTLightWrap-Datentyp dient zum Kapseln von Datenformaten, die bereits auflerhalb von
FTLight bestehen sowie zum Kapseln von kompletten FTLight-Archiven. Es wird empfohlen, in
ControlX1 = URL einen Link zu einer Website von einer App zu geben, welche das gekapselte
Datenformat verarbeiten kann oder alternativ den Namen einer App, falls ein Link nicht verfiigbar
ist.

DTI_FTLightWrap FTL(n)' FTL(URL/App)’..."ControlXn-1"FTL FTLightWrap(Binirdaten)

Die Anzahl der Steuerfelder ist spezifisch fiir das jeweilige Format. Falls nach dem
DTI FTLightWrap-Datentyp keine Steuerfelder folgen (kein Back-Apostroph nach dem
Typidentifikator) dann wird von einem kompletten FTLight-Archiv ausgegangen..

DTI_MCL-Datentyp

Der dem MCL-Datentyp von den Eigenschaften her dhnliche FTL-Datentyp erfordert fiir das
Berechnen der aufeinanderfolgenden FTL-Zeichen mehrere arithmetische Operationen. Abhéngig
vom Prozessor kann dies zu einem betriachtlichen Zeitbedarf fiir das Erzeugen des FTL-
Datenstromes fithren. Daher ist es fiir extreme Laufzeitanforderungen erforderlich eine solche
Kodierung zu verwenden, welche ausschlieBlich durch das Verschieben von Bits und unter
Verwendung von Lookup-Tabellen auskommt, ohne dabei aufwendige arithmetische Operationen
wie Multiplikation oder Division durchfiihren zu miissen. Dieses Format kann vorteilhaft auf ARM-
Architekturen wie zum Beispiel Microcontrollern oder auf Computern mit einer geringen Taktrate
zur Anwendung kommen, wo dennoch ein hoher Durchsatz erzielt werden soll. Es eignet sich
jedoch ebenso fiir schnelle Rechner, wenn extreme Anforderungen beziiglich der zu erreichenden
Datenrate erfiillt werden sollen.

Eine solche Kodierung, welche die beschriebenen Anforderungen erfiillt, wurde von Marko Cebokli
als ein 15/16-Format entwickelt. Es arbeitet auf der Basis von 30-Byte-Feldern oder besser 15
Feldern mit jeweils 16 Bit. Zundchst wird das hochstwertige Bit (MSB) eines jeden Datenwortes
schrittweise in ein 16-Bit-Register eingeschoben. AnschlieSend erfolgt das Nachschlagen in einer
vorausberechneten Tabelle basierend auf dem jeweiligen 16-Bit-Wert ohne das hochstwertige Bit
als 15-Bit-Indexwert. Diese Tabelle wurde zuvor mit den zugeordneten FTLight-Zeichen fiir die
insgesamt 32768 15-Bit-Werte gefiillt. Im letzten Schritt wird das Register, welches alle MSB derart
aufgenommen hat, dass das MSB des letzten 16-Bit-Wertes an der niederwertigsten Position (LSB)
ist, ebenfalls als 15-Bit-Wert in der vorausberechneten Tabelle nachgeschlagen.

Die Implementierung eines 15/16-Algorithmus ergibt eine Effizienz der Kodierung von 93.8% im
Vergleich zu den 96.9% eines 31/32-Algorithmus wie FTL. Der Vorteil eines 15/16-Algorithmus bei
Implementierung mit einer Lookup-Tabelle besteht jedoch zum Beispiel in einem Bedarf von nur 42
Prozessortakten pro Byte auf einem Pentium 4 Prozessor wihrend ein 31/32-Algorithmus beim
gleichen Prozessor 135 Takte pro Byte bendtigt, wodurch der 15/16-Algorithmus auf dem
genannten Prozessor dreimal so schnell als wie der 31/32-Algorithmus ablauft. Diese Relationen
werden sich jedoch mit fortschreitender Prozessortechnik dndern und miissen dann neu bewertet
werden, um das effektivste Verfahren fiir einen Anwendungsfall auszuwéhlen.

Das Layout von DTI_MCL ist dhnlich dem vom DTI_FTL-Datentyp:
DTI_MCL FTL(n) FTL(Dimension_1)"..." FTL(Dimension n-1)'DTI MCL(Binérdaten)

Als Beispiel wird ein Array mit zwei Kanélen eines Ein-Bit-Interferometers, welches Daten von
zwei gleichartigen Geréten enthdlt folgendermallen aussehen:

DTI_MCL'FTL(4)' FTL(1)'FTL(2)'FTL(2)' DTI MCL(Binérdaten)

Ein Messpunkt besteht aus insgesamt vier Bit, wobei zwei Bit das I- und Q-Signal des ersten
Gerites und zwei weitere Bit das I- und Q-Signal des zweiten Gerites darstellen.

Es wird offensichtlich, dass in diesem Fall sogar jedes einzelne Bit seine eigene Adresse bekommen
hat und unter dieser dann auch eindeutig angesprochen werden kann. Dies ist in den Féllen von
Bedeutung, wenn Datenstrome von verteilten Beobachtungsstationen zu einem Korrelator-Standort
tibertragen und dort kombiniert (korreliert) werden sollen.

DTI_FTL-Datentyp

Der DTI _FTL-Datentyp entspricht dem FTL-Format soweit keine Steuerfelder vorhanden sind. Bei
Vorhandensein von mehr als einem Steuerfeld stellen diese die Dimensionen eines Arrays von Bit-
Feldern dar. Das erste Steuerfeld gibt die Anzahl der Dimensionen des Arrays an:

DTI_FTL'FTL(n) FTL(Dimension_1)"..." FTL(Dimension n-1) FTL(Binirdaten)

Als Beispiel wird ein Array mit 12-Bit-Messwerten von einem 100-Kanal-Spektrometer
folgendermalien aussehen:

DTI_FTL'FTL(3) FTL(12)' FTL(100) FTL(Binérdaten)

Das vorliegende Binérfeld wird als dreidimensionales Bit-Feld interpretiert, wobei die ersten beiden
Dimensionen auf 12 Bit fiir jeden einzelnen Messwert sowie auf 100 Werte pro Messwertzeile
gesetzt werden. Die Grofe der dritten Dimension, welche die Anzahl der Messwertzeilen bzw. die
Anzahl von Frequenzdurchldufen darstellt, folgt aus der Groe des Binirfeldes.

DTI_TXL-Datentyp

Der DTI TXL-Datentyp gestattet das Speichern von n-dimensionalen Arrays von null-terminierten
W-Bit Zeichenketten, z.B. 16-Bit Unicode-Strings.

DTI_TXL FTL(n) FTL(W) FTL(Dimension 1)'..." FTL(Dimension_n-1) FTL(Sequenz von
Zeichenketten)

Zum Beispiel wird ein Array von Ubersetzungen von einer ersten Sprache in eine zweite und eine
dritte Sprache mit 8-Bit Zeichenreprisentation folgendermallen gespeichert werden:

DTI _TXL'FTL(3) FTL(8)' FTL(3) FTL(Term11 Term12 Term13 ... TermN1 TermN2 TermN?3)

Jedem Term wird ein Null-Zeichen (ASCII-Wert 0x00, Unicode-Wert 0x0000) hinzugefiigt,
welches das Ende einer null-terminierten Zeichenkette anzeigt. Jeder Term in einem Tripel von
Zeichenketten hat dabei die gleiche Bedeutung, jedoch in unterschiedlichen Sprachen.

DTI DIF-Datentyp

Der DTI_DIF-Datentyp kann ebenso wie DTI MCL die Laufzeit der Datenkodierung gegeniiber
dem FTL-Datenformat auf einigen Rechnerarchitekturen verbessern. Weiterhin sorgt es durch die
Verwendung der Differenzen von bis zu 64-Bit breiten aufeinanderfolgenden Integer-Werten neben
einem geringstmoglichen Aufwand beim Kodieren und Dekodieren von Datenstromen ebenso fiir
eine mogliche Datenkompression bei Werten mit geringer Schwankungsbreite. Deshalb eignet sich
das DTI_DIF-Datenformat insbesondere fiir die Ubertragung und Speicherung von Messdaten von
Rechnern mit geringer Taktrate, wie bei vielen Microcontrollern anzutreffen, sowie bei fehlendem
mathematischen Koprozessor.

Beim Erzeugen eines DTI DIF-Wertes werden die insgesamt 216 Symbole des FTL-Datentyps
durch Addition von 100 zur Differenz zum vorhergehenden Wert folgendermaf3en zugeordnet:

0 — Differenz -100
1 — Differenz -99

99 — Differenz -1
100 - Differenz 0
101 — Differenz +1

199 - Differenz +99

200 - Differenz +100

201 —folgendes Symbol als absoluter Wert

202 —folgende 2 Symbole als absoluter Wert, niederwertiges Symbol zuerst

209 —folgende 9 Symbole als absoluter Wert, niederwertiges Symbol zuerst
210 —kein Wert (leere Position im Datenstrom)
211 — gleiche Differenz wie zuvor fiir die folgenden 2 Werte

214 — gleiche Differenz wie zuvor fiir die folgenden 5 Werte
215 —Beginn von jeweils 2 verschrankten Messwerten mit niedriger Schwankungsbreite

Bei den Kombinationen 201 bis 209 wird aus den sich anschlieBenden 1 bis 9 Symbolen zunéchst
ein vorzeichenloser Integer-Wert berechnet, bei aufsteigender Wertigkeit der Symbole:

WertPositiv = (...(Symbol_9 * 216 + Symbol_8) * 216 + ...) * 216 + Symbol 1
AnschlieBend wird der maximale Bereich fiir den Positivwert ermittelt:
BereichPositiv =216 * (Symbol_0 - 200)
Der endgiiltige Wert ergibt sich aus dem Vergleich von WertPositiv mit BereichPositiv:
1) WertPositiv < BereichPositiv / 2 : Wert = WertPositiv
2) WertPositiv >= BereichPositiv / 2 : Wert = WertPositiv - BereichPositiv

Das Symbol 210 dient zum Kennzeichnen einer leeren Position in einem Datenstrom und mit den
Symbolen 211 bis 214 wird eine mehrfache Wiederholung der vorherigen Differenz angezeigt.

Das Symbol 215 leitet bei Messwertfolgen mit besonders geringen Schwankungen vorrangig in den
niederwertigen 4 Bits einen Bereich mit jeweils 2 verschrinkten Messwerten ein, welche maximal
32-Bit breit sein kdnnen. Dieser Bereich wird beendet sobald bei einer Differenz von iiber 100 ein
(verschriankter) Absolutwert eingefiigt werden muss.

Ein verschrankter Messwert wird durch Verschieben der Bits mit einer Liicke von jeweils einem Bit
erhalten. Die Bits eines zweiten Messwertes mit gleichen Bit-Liicken werden nach einer weiteren
Verschiebung um ein Bit in die Liicken des ersten Wertes eingepasst und es entsteht dadurch aus
zwel einzelnen Messwerten mit bis zu 32-Bit Breite ein verschrinkter 64-Bit-Wert:

Wert 1: Bits in geraden Positionen: 62-60-...-14-12-10-8-6-4-2-0
Wert 2: Bits in ungeraden Positionen: 63-61-...-15-13-11-9-7-5-3-1

Ein Vorteil im Datenvolumen entsteht dadurch, dass bei Schwankungen der verschrankten
Messwerte bis zu einem Wert von maximal 100 zwei Werte nur ein Byte zum Speichern bendtigen.

Falls Messwertschwankungen bei maximal 16-Bit breiten Messwerten nur die niederwertigen 1
oder 2 Bit verdndern dann konnen statt 2 Messwerten alternativ auch 4 Messwerte verschriankt

werden. Dieser Modus wird durch 2 aufeinanderfolgende Symbole 215 eingeleitet und ebenfalls
durch einen (verschriankten) Absolutwert beendet.

Wert 1: Bits in 0-Positionen: 60—-56-...-28-24-20-16—-12-8-4-0
Wert 2: Bits in 1-Positionen: 61-57-...-29-25-21-17-13-9-5-1
Wert 3: Bits in 2-Positionen: 62—-58-...-30-26-22-18-14-10-6-2
Wert 4: Bits in 3-Positionen: 63-59-...-31-27-23-19-15-11-7-3

Eine Verschrinkung kann auch bei 8 maximal 8-Bit breiten Messwerten angewendet werden. Dies
kann zum Beispiel bei 8-Bit breiten Bilddatenstromen mit ausgedehnten Bereichen mit nur 1-Bit
Schwankungen oder ohne Schwankungen eine weitere Reduktion des Datenvolumens bewirken.
Dieser Modus wird durch 3 aufeinanderfolgende Symbole 215 eingeleitet und ebenso wie bei den
anderen Varianten durch einen (verschrinkten) Absolutwert beendet.

Wert 1: Bits in 0-Positionen: 56 -48-40-32-24-16-8-0

Wert 2: Bits in 1-Positionen: 57-49-41-33-25-17-9-1

Wert 3: Bits in 2-Positionen: 58-50-42-34-26-18-10-2
Wert 4: Bits in 3-Positionen: 59-51-43-35-27-19-11-3
Wert 5: Bits in 4-Positionen: 60-52-44-36-28-20-12-4
Wert 6: Bits in 5-Positionen: 61 -53-45-37-29-21-13-5
Wert 7: Bits in 6-Positionen: 62—-54-46-38-30-22-14-6
Wert 8: Bits in 7-Positionen: 63-55-47-39-31-23-15-7

Beim Ubertragen und Speichern von DTI_DIF-kodierten Daten belegt jedes Symbol ein Byte nach
Wandlung des Symbols gemél der fiir FTL festgelegten Zuordnung von Symbolen in Zeichen des
erweiterten ASCII-Zeichensatzes. Die ersten Symbole stellen einen absoluten Anfangswert dar,
gefolgt von Differenzwerten.

Sobald die Differenz zwischen zwei aufeinanderfolgenden Werten grofB3er als 100 ist, muss statt der
Differenz wieder ein Absolutwert eingefligt werden. Nach einer bestimmten Anzahl von
Differenzwerten sollte zum Neustart nach Datenkorruption zur Verbesserung der Robustheit und
Fehlertoleranz ebenfalls wieder ein Absolutwert eingefiigt werden. Wenn dies nach zum Beispiel 31
Differenzwerten erfolgt dann ist fiir 8-Bit Werte die FTL Effizienz der Datencodierung erreichbar.

Das Layout von DTI DIF ist dhnlich dem vom DTI FTL-Datentyp:
DTI_DIF FTL(n) FTL(Dimension _1)..." FTL(Dimension_n-1)'DTI_DIF(Binirdaten)

Im Unterschied zum DTI_FTL-Datentyp gibt es keine Festlegung fiir die Bitbreite eines
Messwertes, weil diese bedingt durch das angewendete Differenzverfahren dynamisch zwischen 8
und 64 Bit schwanken kann. Die erste Dimension 'Dimension_1' bezieht sich daher bereits auf einen
vollstdndigen Wert mit einer potenziell dynamischen Bitbreite.

Als Beispiel wird ein dreidimensionales Array von zwei Messgerdten mit jeweils drei Kanilen
folgendermallen aussehen:

DTI_DIF FTL(3) FTL(2)'FTL(3) DTI_DIF(Binirdaten)

Es ist zu beachten, dass das zuvor beschriebene Differenzverfahren auf jeden Kanal jedes
Messgerites separat angewendet wird. Die dritte Dimension ergibt sich aus der Anzahl der

DTI DIF kodierten Daten wobei jeweils 6 Messwerte einen Datensatz bilden (2 Messgerite mit
jeweils 3 Kanélen).

DTI_UNIT-Datentyp

Der DTI_UNIT-Datentyp ermdglicht die Darstellung eines Bruchteils oder eines Vielfachen einer
Einheitsgrofle sowie auch beliebige Verhéltnisse von beiden, z.B. als Basiswert fiir Messwertdaten.
Negative Werte und Exponenten werden durch doppeltes Back-Apostroph (") gekennzeichnet.

DTI _UNIT FTL(Wert)
DTI_UNIT FTL(1) FTL(Wert)
DTI_UNIT'FTL(2) FTL(Negativwert)

DTI_UNIT FTL(2) FTL(Einheit) FTL(Wert)
DTI_UNIT FTL(3) FTL(Einheit)" FTL(Negativwert)

DTI_UNIT FTL(3) FTL(Einheit)' FTL(Faktor) FTL(Wert)

DTI_UNIT FTL(4) FTL(Einheit)' FTL(Faktor) "FTL(Negativwert)
DTI_UNIT FTL(4) FTL(Einheit)' FTL(Faktor) FTL(Teiler) FTL(Wert)

DTI_UNIT FTL(5) FTL(Einheit)' FTL(Faktor) FTL(Teiler)''FTL(Negativwert)

DTI _UNIT FTL(5) FTL(Einheit) FTL(Faktor) FTL(Teiler)' FTL(Exponent) FTL(Wert)

DTI _UNIT FTL(6) FTL(Einheit) FTL(Faktor) FTL(Teiler) FTL(Exponent) "FTL(Negativwert)

DTI _UNIT FTL(6) FTL(Einheit) FTL(Faktor) FTL(Teiler) ' FTL(Negativexponent) FTL(Wert)

DTI UNIT FTL(7) FTL(Einheit) FTL(Faktor) FTL(Teiler) ' FTL(Negativexponent) 'FTL(Negativwert)

DTI _UNIT FTL(6) FTL(Einheit) FTL(Faktor) FTL(Teiler) FTL(Basis) FTL(Exponent) FTL(Wert)

DTI _UNIT FTL(7) FTL(Einheit) FTL(Faktor) FTL(Teiler) FTL(Basis) FTL(Exponent) ' FTL(negativer Wert)
DTI UNIT FTL(7) FTL(Einheit) FTL(Faktor) FTL(Teiler) FTL(Basis) "FTL(Negativer Exponent) FTL(Wert)
DTI UNIT FTL(8) FTL(Einheit) FTL(Faktor) FTL(Teiler) FTL(Basis) "FTL(Negativer Exponent) 'FTL(n. Wert)

Ein relativer Wert, ausgedriickt als Integer-Zahl, kann neben einer physikalischen Einheit zusétzlich
um einen Faktor, einen Teiler, eine Basis und einen Exponenten ergéinzt werden, um den

endgiiltigen physikalischen Wert darzustellen. Zum Beispiel wird ein relativer Wert von 1, der einen
Wert von 1E-26 darstellt, wie folgt kodiert:

DTI_UNIT FTL(6) FTL(0)' FTL(1) FTL(1) 'FTL(26) FTL(1)

Die im Beispiel verwendete Einheit von '0', kodiert als FTL(0), bedeutet eine relative Zahl ohne
physikalische Einheit. Eine physikalische Messgrof3e muss stattdessen eine Einheit ungleich '0'
erhaltenen, welche nach folgender Zuordnung als SI-Einheit oder als eine davon abgeleitete Einheit

kodiert wird:

0 (ohne Einheit) - [-]

1 Zeit Sekunde [s]

2 Lénge Meter [m]
3 Masse Kilogramm [kg]
4 Stromstirke Ampere [A]
5 thermodynamische Temperatur Kelvin K]
6 Stoffmenge Mol [mol]
7 Lichtstarke Candela [cd]
8 ebener Winkel Radiant [rad]
9 Raumwinkel Steradiant [sr]
10 Frequenz Hertz [Hz]
11 Kraft Newton [N]
12 Druck Pascal [Pa]
13 Energie, Arbeit, Warmemenge Joule [J]
14 Leistung Watt [W]
15 elektrische Ladung Coulomb [C]
16 elektrische Spannung Volt [V]
17 elektrische Kapazitit Farad [F]
18 elektrischer Widerstand Ohm [Q]
19 elektrischer Leitwert Siemens [S]

20 magnetischer Fluss Weber [WDh]

21 magnetische Flussdichte Tesla [T]
22 Induktivitit Henry [H]
23 Celsius Temperatur Grad Celsius [°C]
24 Lichtstrom Lumen [Im]
25 Beleuchtungsstérke Lux [Ix]
26 Radioaktivitat Becquerel [Bq]
27 Energiedosis Gray [Gy]
28 Aquivalentdosis Sievert [Sv]
29 katalytische Aktivitét Katal [kat]

Eine Anwendung kann von diesen Zuordnungen abweichend auch andere Bindrdaten beliebiger
GroBe fiir das Kodieren einer physikalischen Einheit verwenden, welche jedoch nicht mit den
bereits festgelegten Werten kollidieren diirfen.

DTI_TIME-Datentyp

Der DTI_TIME-Datentyp erlaubt einen Bruchteil oder ein Vielfaches einer Sekunde und auch jede
Kombination von beiden als Zeitbasis festzulegen. Eine negative Zeit (Vergangenheit vor 1970)
wird durch ein doppeltes Back-Apostroph (96) vor der Zeitangabe " FTL(Zeit) gekennzeichnet.
DTI_TIME FTL(Zeit)

DTI_TIME FTL(1) FTL(Zeit)

DTI_TIME FTL(2) 'FTL(Zeit vor 1970)

DTI TIME FTL(2) FTL(Faktor) FTL(Zeit)

DTI TIME FTL(3) FTL(Faktor) FTL(Zeit vor 1970)

DTI TIME FTL(3) FTL(Faktor) FTL(Teiler) FTL(Zeit)

DTI_TIME FTL(4) FTL(Faktor) FTL(Teiler) "FTL(Zeit vor 1970)

DTI TIME'FTL(4) FTL(Faktor) FTL(Teiler)' FTL(Exponent) FTL(Zeit)

DTI TIME'FTL(5) FTL(Faktor)' FTL(Teiler)' FTL(Exponent) "FTL(Zeit vor 1970)

DTI TIME'FTL(5) FTL(Faktor) FTL(Teiler)" 'FTL(Negativexponent)' FTL(Zeit)

DTI TIME'FTL(6) FTL(Faktor) FTL(Teiler)" FTL(Negativexponent)' 'FTL(Zeit vor 1970)

DTI TIME'FTL(5) FTL(Faktor) FTL(Teiler)' FTL(Basis) FTL(Exponent) FTL(Zeit)

DTI TIME'FTL(6) FTL(Faktor) FTL(Teiler)' FTL(Basis) FTL(Exponent)' 'FTL(Zeit vor 1970)

DTI TIME'FTL(6) FTL(Faktor) FTL(Teiler)' FTL(Basis)' "FTL(Negativexponent) FTL(Zeit)

DTI TIME'FTL(7) FTL(Faktor)' FTL(Teiler)'FTL(Basis) 'FTL(Negativexponent)' 'FTL(Zeit vor 1970)
Alle Zeitangaben beziehen sich auf den 1.Januar 1970. Der Zeitschritt, welcher benétigt wird um
von dieser Bezugszeit zu einem beliebigen Zeitpunkt zu gelangen wird entsprechend den zuvor fiir
die Zahlendarstellung festgelegten Regeln angegeben. Zum Beispiel wird ein Millisekunden-
Zeitschritt fiir positive und negative Zeiten (vor 1970) wie folgt kodiert:

DTI_TIME FTL(3)' FTL(1)'FTL(1000)' FTL(Zeit) — Zeitangabe ab 1970-01-01 00:00:00 UTC
DTI_TIME FTL(4)' FTL(1)'FTL(1000) ' FTL(Zeit) — Zeitangabe vor 1970

DTI_TOKEN-Datentyp

Der DTI TOKEN-Datentyp iibertragt ein Kommando fiir den Aufbau, den Abbau und die
Verwaltung von ,,CmServiceConnection* im Cosmos-Programmsystem. Es kommen keine
Typsteuerfelder zur Anwendungen. Stattdessen wird der Definitionswert eines Kommandos als
FTL-Wert direkt im Anschluss an den DTI TOKEN-Datentyp iibertragen:

DTI_TOKEN(Kommando)

DTI_LINK-Datentyp

Mit dem DTI_LINK-Datentyp werden Adressen (Funktionszeiger) von lokal erreichbaren Modulen

tibertragen. Es kommen keine Typsteuerfelder zur Anwendung. Stattdessen wird die Adresse direkt
nach dem DTI_LINK-Datentyp als FTL-Datenfeld {ibertragen:

DTI_LINK(Adresse)

Der FTL-Identifikator-Datentyp (IFTL)

Ein FTL-Identifikator (IFTL) wird als Zeichenkette definiert, welche genau ein @-Zeichen enthalt
und ansonsten nur solche Zeichen, die auch ein giiltiges FTL-Symbol reprasentieren konnen.
Insbesondere darf ein Identifikator daher keine Zeichen aus dem Bereich 0..31 und auch keine der
fiir FTL festgelegten Sonderzeichen enthalten.

Die Struktur eines Identifikators besteht somit aus einem Prefix und einem Suffix, welche durch das
@-Zeichen miteinander verbunden sind. Sowohl Prefix als auch Suffix stellen in sich einen FTL-
kodierten Wert dar, welcher sich bei Bedarf in jeweils einen Bindrwert konvertieren und in dieser
Form evaluieren ldsst.

Sobald ein Identifikator als erstes Element einer Zeile in einem FTLight File/Stream erscheint so
wird er zur Root (oberstes Verzeichnis) fiir alle nachfolgenden Informationen. Ein Identifikator
stellt somit die hochste Ebene in allen Informationshierarchien dar.

Die Aufgabe eines Identifikators ist es, alle FTLight-Informationen eindeutig zu machen. Dieser
Anspruch bedeutet, dass die Existenz eines doppelten Identifikators sehr unwahrscheinlich ist und
dass dies fiir alle Daten zutrifft, welche hier auf der Erde, als auch auf anderen Planeten unseres
Sonnensystems, in anderen Sonnensystemen oder in anderen Galaxien unseres Universums oder
auch auflerhalb unseres Universums ihren Entstehungsort haben.

Diese Spezifikation kann nur einen Vorschlag machen, wie das Problem eines eindeutigen FTLight-
Identifikators gelost werden kann. Sie ist daher als Empfehlung zu sehen, wie eindeutige
Identifikatoren z.B. flir das erdgebundene Sammeln von radioastronomischen Daten gebildet
werden konnen. Der folgende Merksatz soll dabei als Wegweiser fiir das Generieren dienen:

“Fine Person A geboren in B sammelt Daten in C zum Thema D”

Die vorgeschlagene Regel benutzt zum Beispiel die Anfangsbuchstaben der Komponenten A und B
in GroBbuchstaben. Die Komponente C enthilt eine flir das globale Gradnetz geltende Locator-
Bezeichnung wie sie bei Funkamateuren tiblich ist und erweitert diese durch eine lokale
Ortsbezeichnung. Die Komponente D enthélt eine geeignete Kurzform fiir das Thema. Die
einzelnen Elemente werden anschliefend nach folgendem Schema zusammengefiigt:

AB@C.D
Beispiel:
Der Identifikator
“EKD@UnCmSunEar JO63rx Dambeck.RSpectro”

besteht aus folgenden Komponenten:

« E - Eckhard (Vorname)

- K - Kantz (Nachname)

D - Dambeck (Geburtsort)

- @ - Kennzeichen fiir einen Identifikator

e Un - Standort: Universum 'Un'

e Cm - Standort: Kosmischer Sektor 'Cm'

e Sun - Standort: Sonnensystem 'Sun'

e Ear - Standort: Planet 'Erde’

* - Separator innerhalb der Standortbezeichnung

» JO63rx - Standort: Locator

o - Separator innerhalb der Standortbezeichnung

e Dambeck - Standort: lokale Ortsbezeichnung

.. - Separator zwischen Ort und Thema

« RSpectro - Kurzform fiir “Radio Frequency Spectrometer” (Gerét als Thema)

Die Kombination von Universum, kosmischem Sektor, Sonnensystem und Planet zielt dabei auf
Eindeutigkeit auf allen Ebenen. Falls diese Kombination fehlt, dann wird ,,UnCmSunEar* als Wert
angenommen. Fiir die Planeten unseres Sonnensystems werden folgende Bezeichner verwendet:

UnCmSun - Sonnensystem (Weltraummission auBerhalb von Planeten)
UnCmSunMer - Merkur

UnCmSunVen - Venus

UnCmSunEar - Erde

UnCmSunMar - Mars

UnCmSunPax - Pax (nur als Bruchstiicke im Asteroidengiirtel, zu rekonstruieren)
UnCmSunJup - Jupiter

UnCmSunSat - Saturn

UnCmSunUra - Uranus

UnCmSunNep - Neptun

UnCmSunPlu - Pluto

Fiir den Bezeichner unseres kosmischen Sektors muss zukiinftig gegebenenfalls eine weitere
Strukturierung vorgenommen werden, ebenso fiir Orte auf Monden von einem Planeten.

Alternativ zu Zeichenketten konnen auch digitale Signaturen (nach entsprechender FTL-Kodierung)
zu einem Bestandteil eines Identifikators werden. Sie erscheinen dann anstelle der Komponente AB
und bezeichnen den Operator.

Adressierung von Gruppen mit gleichem Identifikator

Der IFTL Identifikator kann neben der eindeutigen Adressierung von gespeicherten statischen
Informationen insbesondere auch fiir die Kommunikation von Systemen eingesetzt werden, so wie
unter ,,Anfragen, Abonnieren und Schreiben von aktuellen Daten* beschrieben. Dabei kann die
Vergabe von Identifikatoren sowohl individuell mit einem Identifikator pro System, als auch fiir
eine Gruppe von meist gleichartigen Systemen erfolgen. In diesem Fall werden Anfragen an einen
Identifikator als Gruppenanfragen wirksam, welche von ein oder mehreren Systemen gleichzeitig
beantwortet werden konnen. Die individuelle Zuordnung einer Antwort zu einem System erfolgt bei
Gruppenanfragen durch Auswertung der erhaltenen Informationen.

Beim Schreiben von Daten und Kommandos auf Gruppen-Identifikatoren wird die Information
parallel auf alle adressierten Systeme iibertragen. Die Systeme speichern die erhaltenen Daten und
fithren erhaltene Kommandos in der Regel unabhingig voneinander gleichzeitig und parallel aus.

Adressdatentyp

Die Aufgabe einer Adressangabe ist es, das Duplizieren von Informationen innerhalb eines FTLight
Files/Streams durch das Referenzieren von bereits vorhandenen Informationen zu vermeiden. Der
Wirkungsbereich einer Adressangabe ist dabei auf den FTLight File/Stream begrenzt, wo sie selber
darin enthalten ist.

Theoretisch wire es moglich auch Elemente in anderen FTLight Files/Streams zu referenzieren,
weil die Informationen durch die verwendeten Identifikatoren auf der obersten Ebene eindeutig
gemacht wurden. Trotz dieser Moglichkeit sollte kein Gebrauch davon gemacht werden, weil man
sich dann auf eine fest verdrahtete Informationsstruktur verlassen wiirde.

Wenn man die Historie einer bereits jahrzehntelangen Reprisentation von Informationen in
Datenstrukturen betrachtet so wird deutlich, dass jede Datenstruktur nach einiger Zeit veraltet und
fiir die sich dndernden Anforderungen angepasst, erweitert oder auch vollstindig neu definiert
werden muss. Daher fiihrt eine Fortsetzung von fest verdrahteten Datendefinitionen zu relativ
kurzlebigen Datenstrukturen .

Im Gegensatz dazu besteht das Ziel der FTLight-Spezifikation in langlebigen Datenstrukturen,
welche mit Leichtigkeit angepasst, erweitert oder sogar teilweise neu definiert werden konnen, ohne
dabei die Verbindung zu vorher definierten Datenstrukturen abreiflen zu lassen.Jedoch verlangt
diese Zielstellung das Verwenden von vollstdndigen Pfadinformationen anstelle von internen
Adressen beim Referenzieren von externen Daten.

Adressdarstellung

(1313

Eine Adresse wird durch Integer-Zahlen dargestellt, die durch ein “-*“ (Minuszeichen) miteinander
verbunden sind, wobei die Folge der Integer-Zahlen die Position des entsprechenden Elementes in
der Informationshierarchie innerhalb eines Files/Stream angibt. Adressen reprdsentieren somit Links
zu anderen Elementen, zu denen sie jeweils zeigen.

Beispiel:
0-0-1-0
Eine Adresse kann zum Beispiel als erstes Element in einer Zeile verwendet werden, falls dieses auf

ein libergeordnetes Element verweisen soll, welches durch keine implizite FTLight-Regel erreicht
werden kann.

Beispiel:

EKDE@JO63rx Dambeck.RSpectro,1073217600:FTLight,2004-01-12

,Antenne, Parabolspiegel 90cm

ist gleichbedeutend mit

EKDE@JO63rx Dambeck.RSpectro, 1073217600
,Antenne, Parabolspiegel 90cm
0-0:FTLight,2004-01-12

und bezieht sich in beiden Féllen auf die folgende Struktur:

0 EKD@JO63rx Dambeck.RSpectro
0-0 1073217600

0-0-0 FTLight

0-0-1 2004-01-12

0- Antenne

0-1-0 Parabolspiegel 90cm

Umgang mit Anderungen

Adressen konnen von besonderem Vorteil sein, wenn vorhandene Strukturen gedndert werden
miissen ohne dass Programme, welche sich auf die alten Strukturen verlassen in Mitleidenschaft
gezogen werden sollen, wie z.B.:

Altes Format:
Frequenz:GHz,10.600
Neues Format:
Frequenz:GHz,10.600,Start, Schritt,Ende, Standard

0-2,10.500
0-3,0.00025
0-4,12.750
0-5,0-1
Die Struktur des neuen Formates wiirde folgendermallen aussehen:
0 Frequenz
0-0 GHz
0-1 10.600
0-2 Start
0-2-0 10.500
0-3 Schritt
0-3-0 0.00025
0-4 Ende
0-4-0 12.750
0-5 Standard
0-5-0 10.600

Der letzte Wert (0-5-0) wire der gleiche Wert wie (0-1) weil ein Link darauf verweist. Dies gestattet
es mit der alten Struktur kompatibel zu bleiben, welche die Frequenz auf der Position (0-1) hatte.
Alle Anwendungen, welche die Frequenz auf dieser Position erwarten, werden mit der neuen
Datenstruktur auch weiterhin funktionsfahig bleiben. Zusétzlich kénnen neue Anwendungen
vorteilhaft die erweiterten Daten verwenden, welche neben der Frequenz auch eine
Anfangsfrequenz, einen Frequenzschritt sowie eine Endfrequenz bereitstellen.

Somit zeigt das vorherige Beispiel eine zweite Methode fiir das Erzielen von Kompatibilitét
zwischen den Datenstrukturen, wobei die Definition der neuen Datenstruktur dafiir sorgt, dass die
Verbindung zu existierenden Anwendungen nicht unterbrochen wird. Zusammen mit der zuvor
beschriebenen Verwendung von kompletten Pfadnamen fiir das Referenzieren von externen Daten,
wo immer dies mdglich ist, ergibt dies eine praktische Losung fiir das Andern von Datenstrukturen.
Diese konnen nun iiber sehr lange Zeitrdume und liber mehrere Generationen von
Anwendungsprogrammen angepasst, erweitert oder teilweise neu definiert werden, wann immer
neue Anforderungen dies notwendig machen.

Die Moglichkeit zum Anpassen, Erweitern und teilweise neu Definieren von Datenstrukturen wird
in der Radioastronomie, insbesondere wegen der sehr langen Zeitrdume von Datenaufzeichnungen,
fiir extrem wichtig erachtet. Eine Datenbank mit detaillierten Geschéftsdaten einer Firma wird nach
einigen Jahrzehnten eventuell keinerlei Bedeutung mehr haben, weil es die Firma dann vielleicht
schon lange nicht mehr gibt. Das Gegenteil ist bei radioastronomischen Daten der Fall. Das
Vorhandensein von Jahrzehnte alten Daten von Radioquellen kann eine Schliisselrolle spielen, wenn
es um das Aufstellen von dynamischen Modellen der Radioquelle geht. Daher miissen die Daten
iiber sehr lange Zeit in lesbarer Form erhalten bleiben. Die FTLight-Spezifikation ist diesem Ziel
verpflichtet.

Entropie-Modus (FPGA)

Der Entropie-Modus optimiert das FTLight-Protokoll fiir die folgenden zwei Anwendungstille:
« Nutzdateniibertragung mit hoher Geschwindigkeit bis nahezu 100% der Bandbreite
« Implementierung mit einfacher Logik z.B. fiir FPGA

In beiden Fillen bleibt das Grundkonzept des FTLight-Protokolls beziiglich Unbeschranktheit
sowohl bei der GroBe von Informationselementen als auch bei der Tiefe der Informationshierarchie
erhalten. Gegeniiber anderen Modi gelten beim Entropie-Modus die folgenden Einschrinkungen
und Besonderheiten:

« der Entropie-Modus gilt fiir eine ganze Zeile und kann nicht mit anderen Elementen vermischt
werden

« die Adressierung beginnt stets unterhalb des IFTL und es kdnnen daher nur Daten fiir diesen
einen IFTL iibertragen werden

« es werden nur bereits existierende Knoten der Informationshierarchie bedient

« es werden nur Knoten der jeweils untersten Ebene der Informationshierarchie adressiert sowie
die Eltern-Knoten eines Ringpuffers auf unterster Ebene

« in einem Ringpuffer wird nach einmaliger Adressierung des Eltern-Knotens fortlaufend in die
aufeinander folgenden Speicherplitze beginnend bei der aktuellen Position geschrieben

« falls die empfangenen Bits den letzten Speicherplatz nicht vollstdndig flillen, dann wird dieser
mit ,,0“ aufgefiillt.

« falls im Entropie-Modus am Ende keine Byte-Grenze erreicht wird, dann werden die
verbleibenden Bits beim Senden mit ,,0-Fiillbits aufgefiillt und beim Empfang verworfen

« wenn im Entropie-Modus Datenblocke ohne Byte-Ausrichtung aufeinander folgen, dann
konnen diese (gleichbedeutend) mit oder ohne ,,0°-Fiillbits iibertragen werden

Ubertragungsrahmen:

Die Aktivierung des Entropie-Modus erfolgt durch ein gesetztes Bit (,,1) am Anfang des
Datenstroms. Bei allen anderen Modi ist das erste Bit stets riickgesetzt (,,0).

Die Anzahl der gesetzten Bits am Anfang eines Datenstroms vor dem ersten ,,0“-Bit stellen einen
Exponent zur Basis 2 fiir die Lingenfestlegung eines Ubertragungsrahmens dar, z.B.

legt einen Ubertragungsrahmen mit Byte-Ausrichtung (8 Bit) fest. Im Abstand dieses Rahmens
zeigt das jeweils erste Bit eine Fortsetzung des Entropie-Modus an, falls es auf ,,1* gesetzt ist.
Andernfalls wird bei ,,0“ ein letzter Rahmen im Entropie-Modus angezeigt, z.B.

L, 1110XXXX I XXXXXXX X XXX XXX
ibertrdgt mit einem Rahmen von 8 Bit insgesamt 3 Byte mit 18 Bit Nutzdaten.

Falls die Gesamtlénge aller Rahmen nicht auf eine Byte-Grenze fillt, dann miissen vor dem
Verlassen des Entropie-Modus die verbleibenden Bits auf 0 gesetzt werden, z.B.

,»100x* oder ,,110x1xxx0xxx" miissen mit jeweils vier ,,0° Bits aufgefiillt werden zu:

,»100x0000° bzw. ,,110x1xxx0xxx0000*

Das Auffiillen mit Nullbits kann optional entfallen, wenn sich ein weiterer Datenblock im Entropie-
Modus an einen Datenblock ohne Byte-Ausrichtung anschlief3t.

Adressierung:

Fiir die Adressierung auf jeder Ebene der Informationshierarchie werden N Bits verwendet. Die
Anzahl N wird durch die Anzahl der 1-Bits beginnend beim ersten Bit der Nutzdaten nach den Bits
zur Kennzeichnung der Rahmenlédnge signalisiert. Diese Lange kann im speziellen Fall auch 0 sein.
Es gibt keine Beschrinkung zur maximalen Anzahl der Adressbits entsprechend dem Grundkonzept
des FTLight-Protokolls zur Vermeidung von jeglichen Beschrankungen im Design.

Die Adresse wird Ebene fiir Ebene aus jeweils N aufeinanderfolgenden Bits gebildet ohne einen
weiteren Trenner zwischen den Adressen der verschiedenen Ebenen. Die Adressierung endet, sobald
ein letztes Element in der Informationshierarchie erreicht ist. Es wird in keinem Fall ein neues
Element erzeugt. Alle weiteren Bits stellen stattdessen die Information fiir das angewéhlte Element
dar, beginnend beim hochstwertigen Bit. Wenn weniger Bits iibertragen wurden als wie das Element
erwartet, dann werden die niederwertigen Bits mit 0 aufgefiillt.

Im Falle eines Ringpuffers gilt die Adresse des libergeordneten Elementes (Eltern-Element) als
letztes zu adressierendes Element der Hierarchie. Die Information wird jedoch eine Ebene tiefer
fortlaufend in die Speicherplitze des Ringpuffers eingetragen.

Informationsbits:

Die Anzahl der Informationsbits fiir das angewihlte Element ist unbeschrinkt. Je mehr Bits als
Information tibertragen werden, desto mehr ndhert sich die Ausnutzung der Bandbreite dem
theoretischen Maximum von 100% der zur Verfiigung stehenden Bandbreite.

Die Adressierung bei den nachfolgenden Beispielen beginnt in jedem Fall unterhalb des IFTL in der
darunter liegenden Ebene.

Das folgende Bitmuster ist ein Beispiel fiir ein Adressbit (10) ,,a* und 8 Informationsbits ,,i* bei 8-
Bit Ubertragungsrahmen mit einer Effizienz von 50% (8 Bit Nutzdaten in 16 iibertragenen Bits).

LI11010ai O0iiiiiiie
Wenn z.B 4 Adressbits (11110) erforderlich sind dann finden bei einem 8-Bit Ubertragungsrahmen
in 4 Byte bis zu 16 Informationsbits Platz, was ebenfalls einer Effizienz von 50% entspricht:

Wenn die Informationshierarchie unterhalb des IFTL einen Ringpuffer mit 8-Bit Speicherplitzen
und ansonsten keine weiteren Elemente enthilt, dann konnen z.B. 7 Byte Information in 8 Byte bei
einer Rahmengrofle von 32 Bit mit einer Effizienz von 87,5% iibertragen werden:

.. "

HSI111001 iiiidii1i idiiiiidi1 d1ii1di1 O1iidi1i iidi11d1 di1i1dii1 1iii1iiid

Fiir eine weitere Erhohung der Ubertragungseffizienz muss die GroBe der iibertragenen Frames
weiter erhoht werden. Wenn dabei wie im folgenden Beispiel 2046 Informationsbytes (16368 Bit)
in 2048 Byte (16384 Bit) iibertragen werden, dann erreicht die Effizienz bereits 99,9% der zur
Verfligung stehenden Bandbreite:

LI 11110041 iiiiiiii ... iiiiiil Qiiiiiii iiiiiii .. iiiiiii"
Wenn zusétzlich einige Adressbits benotigt werden, dann tritt bei groBen Frames nur ein geringes

Absinken der Effizienz auf, wie das folgende Beispiel zeigt. Hier werden in 1024 Bit insgesamt
1008 Informationsbits und zwei Adressbits libertragen, was einer Effizienz von 98,4% entspricht:

HI111111 10 110aai iiiiiiiil ... 1111111 Oiiiiiil ii1tiiil ... 1i1i111"
Die fehlenden 16 Bits bis zu einer "geraden" Anzahl von 1024 Nutzbits konnen mit kleinem Frame
von 8 Bit ergénzt werden, wobei sich eine durchschnittliche Effizienz von 97,0% ergibt:

1101102 1aiiiiii 1iiiiiii 0iii0000"
Framework- Funktionalitat

Obwohl der Zweck einer Datensammlung im Speichern von Nutzdaten besteht, so ist es dennoch
niitzlich, Zusatzinformationen fiir die Beschreibung des Inhalts der einzelnen Felder zur Verfiigung
zu haben. Derartige Daten werden Metadaten genannt. Weil eine FTLight-Datei ihrerseits jedoch
bereits viele Metadaten enthélt, so konnte die Beschreibung dieser Metadaten als Meta-Metadaten
bezeichnet werden. Stattdessen werden solche Daten im Kontext der FTLight-Spezifikation als
Framework bezeichnet.

Optionale Werte

Framework-Informationen werden durch leere Datenfelder eingeleitet, wie sie zum Beispiel durch
einen zweifachen Doppelpunkt im Anschluss an eine Pfaddefinition entstehen. Alle Daten, welche
dem zweifachen Doppelpunkt folgen, werden zu optionalen Werten, welche in das hierarchisch
dariiber liegende leere Feld eingetragen werden konnen.

Zum Beispiel:
Radioquelle: :Sonne, Krabbennebel, 3C353

Die Werte “Sonne”, “Krabbennebel” und 3C353 stellen die optionalen Werte dar, welche dem Feld
“Radioquelle” als Wert auf der hierarchisch darunterliegenden Ebene zugewiesen werden kdnnen

Kommentare

Ein Kommentar wird durch zwei benachbarte leere Datenfelder eingeleitet, wie zum Beispiel:

Radioquelle:::Dies ist der Name der beobachteten Radioquelle.

Schliisselworte auf der Ebene von Kommentaren konnen dazu benutzt werden, um Empfehlungen
fiir das Ausfiillen der Datenfelder zu geben, zum Beispiel:

Radioquelle:::Limit:Zeichen:80

Die Empfehlung fiir “Radioquelle” ist in diesem Fall, dass sie nicht mehr als 80 Zeichen lang sein
sollte.

Standardvorgaben

Sobald man ein Element am Ende einer Reihe von optionalen Werten anfiigt wird dieses Element
zur Standardvorgabe und die gesamte Hierarchie von dariiber liegenden optionalen Werten wird an
der Zielposition eingetragen. Diese Standardvorgabe kann spater dadurch tiberschrieben werden,
dass ein anderer optionaler Wert aus dem Wertevorrat als reales Element in die FTLight-Datei
eingetragen wird, zum Beispiel:

Beobachtung: :Radioquelle:Sonne
Beobachtung: :Radioquelle: :Sonne, Krabbennebel, 3C353

Beobachtung:Radioquelle:Krabbennebel

Zunichst wird “Sonne” als Standardvorgabe fiir “Radioquelle” eingetragen, was spiter durch den
Eintrag “Krabbennebel” liberschrieben wird.

Mehrfachspezifikationen

Im Falle von mehreren gleichformigen Datenstrukturen ist es sinnvoll, die Framework-Daten nur
einmal einheitlich fiir alle Datenstrukturen anzugeben. Bei der Arbeit mit mehreren gleichartigen
Empfangskandlen kann zum Beispiel die Angabe fiir die Kanalnummer in der Pfadangabe
freigelassen werden, wodurch sich die anschlieenden Festlegungen auf alle Kanéle beziehen:
Empfangskanal, : :Abtastrate:Hz

Interpretation

Framework-Festlegungen werden in der Regel in einer speziellen Framework-Datei abgelegt,
welche von den darauf aufbauenden Datendateien referenziert wird. Der Inhalt einer Framework-
Datei ist als Hilfe zum Ausfiillen von Datenstrukturen gedacht, zum Beispiel durch das Vorgeben
geeigneter Standardwerte sowie weiterer Optionen sowie auch fiir das Bereitstellen von
Erlduterungen fiir das Ausfiillen der Felder. Die Framework-Daten bewirken niemals eine
Beschriankung fiir das Ausfiillen von Datenstrukturen, jedoch werden sie Empfehlungen fiir
sinnvolle Einschrankungen beim Ausfiillen vorgeben, wie z.B. die Anzahl der Zeichen in:

Radioquelle:::Limit:Zeichen:80

Dennoch ist es Sache des Benutzers von Framework-Daten, ob die Einschrankungen beachtet
werden oder auch nicht.

Datenintegritat

Das Ziel einer Unterstiitzung von Datenintegritét ist es zum einen, mogliche Datenverfialschungen
zu erkennen und zum anderen ein Konzept anzubieten, mit dessen Hilfe soviel als mdglich der noch
unversehrten Daten eines defekten Files/Streams wiedergewonnen werden konnen.

Die Unterstiitzung von Datenintegritit in einem FTLight File/Stream basiert auf einer Zeile als
kleinster Einheit, fiir die die Datenkonsistenz gepriift werden kann. Daher kann eine Priifsumme
(optional) an das Ende einer Zeile angehéngt werden, welche von allen Zeichen der Zeile vor der
Priifsumme zuziiglich einer Zeilennummer, welche zeitweilig die Stelle der Priifsumme einnimmt,
berechnet wird.

Die Priifsumme wird als Binérfeld eingesetzt, welches durch ein vorangehendes Gleichheitszeichen
eingeleitet wird. Wenn ein Binérfeld am Ende einer Zeile nach einem Gleichheitszeichen erscheint,
so handelt es sich um die Priifsumme.

Priifsummenberechnung

Eine Priifsumme wird durch ein oder mehrere Symbole des Bindrdatenformats gebildet. Abhingig
von der Anzahl der bindren Symbole im letzten Feld der Zeile wird die Priifsumme 216 zur Potenz
der Anzahl sein, z.B. 216*216 = 46656 im Falle von zwei Symbolen oder 10077696 im Falle von
drei Symbolen.

Die Anzahl der Symbole sollte in Abhangigkeit von der Liange der Zeile gewahlt werden. Sie kann
von einer Zeile zur ndchsten variieren. Fiir eine kurze Textzeile wird ein einzelnes Symbol in der

Regel ausreichend sein. Falls jedoch mehrere Gigabyte von Daten in einem einzelnen Element
untergebracht werden, z.B. von einer Audio/Video-Datei oder wenn eine grofle FTLight-Datei als
Binirdaten in einem Element gekapselt wird dann kann es empfehlenswert sein, entsprechend
mehrere Symbole fiir die Darstellung der Priifsumme zu verwenden. Es gibt vom Konzept her keine
Begrenzung fiir die Anzahl der Symbole in einer Priifsumme.

Nach Festlegung einer Symbolanzahl wird die Priifsumme dadurch berechnet, dass der Rest beim
Teilen der gesamten Zeile durch die Basis der Priifsumme ermittelt wird. Vor Beginn dieser
Rechnung wird die Zeilennummer (als ASCII-String) beginnend mit 1 fiir die erste Zeile an Stelle
der Priifsumme eingetragen.

Beispiel: Einstellige Priifsumme fiir die Zeile 7
,Data=7

Zeichen Wert Teiler Rest _
, 44 44 % 216 = 44
D 68 (44*256+ 68) % 216 =100
a 97 (100*256+ 97) % 216 =209
t 116 (209*256+116) % 216 = 52
a 97 (52*256+ 97) % 216 = 17
= 61 (17*256+ 61) % 216 = 93
7 55 (93*256+ 55) % 216= 103

Das Zeichen welches dem Symbol 103 entspricht ist 103 + 32 = 135 entsprechend den zuvor fiir die
Bildung des Bindrdatentyps aufgestellten Regeln. Dieser Wert entspricht dem Zeichen ‘} ‘. Daher
wird die Zeile mit der Priifsumme wie folgt aussehen:

,Data={

Der Empféanger der Zeile wird die gleichen Rechnungen durchfiihren und wird dadurch in der Lage
sein, die Konsistenz der Daten durch Vergleich mit der Priifsumme am Ende der Zeile zu
iiberpriifen. Bevor die Rechnungen durchgefiihrt werden muss der Empféanger die Priifsumme durch
eine Zeilennummer ersetzen, welche Empfanger-seitig zu bilden ist. Daher wird die Zeilennummer
ebenso tiberpriift, ohne dass diese explizit tibermittelt werden muss.

Wiederherstellung defekter Daten

Gelegentlich kann es vorkommen, dass ein einzelnes Byte oder eine Serie von Bytes in einem File/
Stream verfilscht werden. Obwohl eine Priifsumme das Feststellen einer Datenverfélschung
ermoglicht, so kann sie dennoch keinen Beitrag zum Wiederherstellen der urspriinglichen Daten
leisten. Daher wird es von den intakten Zeilen abhingen, ob Informationen wiederhergestellt
werden konnen. Angenommen der Pfad der Information ist durch die defekte Zeile nicht verdndert
worden, so werden alle anderen Daten ihre Stellung in der Datenhierarchie beibehalten. Lediglich
die defekte Zeile wird in diesem Fall verloren sein.

Falls jedoch in der defekten Zeile der Pfad geéndert wurde und die darauffolgende Zeile sich auf
den aktuellen Pfad bezieht dann werden alle nachfolgenden Informationen an eine falsche Stelle in
der Informationshierarchie gesetzt werden. In diesem Fall ist der einzig mogliche Ausweg, die Datei
in einem Texteditor zu 6ffnen und die defekte Zeile von Hand richtig zu stellen, soweit deren Inhalt
bekannt ist oder aus der Struktur abgeleitet werden kann.

FTLight-Archiv

Wenn ein Computer eine FTLight-Datei generiert oder einen FTLight-Stream von einem anderen
Computer empfangt dann wird der Inhalt dieses Files/Streams in der Regel auf die Festplatte
geschrieben. Der folgende Archivaufbau gestattet es, beliebige FTLight-Dateien auf die Festplatte
zu schreiben, ohne dass Konflikte mit bereits dort vorhandenen fritheren Dateien befiirchtet werden
miissen.

Der Schliissel zum Erreichen eines eindeutigen Namens fiir den Pfad und die Datei ist der
Zeitstempel flir das Erstellen der Datei. Als eine unverénderliche Regel wird der Zeitstempel des
Erstellens einer Datei immer auf Position “0-0” geschrieben und folgt damit direkt dem
Identifikator auf der Position “0” in jedem FTLight File/Stream. Dies ist eine der fest definierten
Eigenschaften von einem FTLight File/Stream, wo Funktionalitdt mit verbunden ist und aus diesem
Grund muss diese Regel fiir alle Zeiten erhalten bleiben.

Die Verzeichnisstruktur in einem FTLight-Archiv ist wie folgt definiert:

1 - FTLight

2 — Ortsbezeichner (Galaxie-Zentralsonne-Sonnensystem-Planet Locator lokaler-Ortsname)
3 — Identifikator (Personenkennung@Ortsbezeichner.Gerétetechnik)

4 — Jahr

5 — Monat

6 — Tag

7 — Stunde

8 — Minute

9 — Sekunde

10 — Millisekunde
11 -...

Abhingig von der Zeitdauer, die eine FTLight-Datei umfasst, wird die eigentliche Datei zum
Beispiel in einem ‘Sekunden’-Ordner abgelegt oder auf einer hdheren oder niedrigeren Ebene.Die
Namen der Dateien werden dabei wie folgt gebildet, wobei die Werte in Klammern zu ersetzen
sind:

(Jahr)-(Monat)-(Tag) utc(Stunde)h(Minute)m(Sekunde)s.(Millisekunde) (Identifikator).csv

Unter der Voraussetzung, dass es filir einen gegebenen Identifikator zu jedem Zeitabschnitt nur eine
einzige Datei geben kann, wird der gewédhlte Dateiname universell eindeutig sein. Anstelle eines
Identifikator kann auch ein Bezeichner fiir den Dateityp zum Einsatz kommen. Die

Dateiendung .csv wird als Vorzugsvariante vorgeschlagen, wodurch die Datei bequem in Excel zum
Anschauen gedftnet werden kann.

Beispiel: FTLight-Archiv mit Dateien einer 6-Minuten und einer Millisekunden Zeitdauer

FTLight
JO63rx_Dambeck
EKDE@JO63rx Dambeck.RSpectro
2004
Jan
20th
utc06
06m
12m
18m
24m
2004-01-20 utcO06h24m EKDE@JO63rx Dambeck.RSpectro.csv
31m

47s
719ms
2004-01-20 utcO06h31m47s719ms_EKD@JO63rx Dambeck.RSpectro.csv
Ein weiterer Vorteil zusitzlich zur Eindeutigkeit der Dateinamen ist es, dass Informationen sehr
leicht wiedergefunden und iiberpriift werden konnen. Weiterhin konnen Informationen in beliebigen
Portionen entnommen und mittels Diskette, CD, DVD, Ftp-Datei oder einem beliebigen anderen
Medium oder Ubertragungskanal zu anderen Computern iibermittelt werden.

Beispiel:

Das Ubertragen der Beobachtungsdaten eines ganzen Tages von einer Station zu einer anderen
Station erfordert lediglich das Komprimieren des Verzeichnisses vom entsprechenden Tag sowie das
Ubermitteln der entstehenden Datei zur Empfingerseite. Der Empfinger kann die erhaltene Datei
dem eigenen FTLight-Archiv direkt hinzufligen ohne Gefahr zu laufen, dass vorhandene Daten

dadurch iiberschrieben oder beeintrachtigt werden konnten.

Versionsverfolgung fiir Informationselemente

Informationen konnen zum Entstehungszeitpunkt falsch oder unvollstindig sein oder sie konnen
sich mit der Zeit &ndern. Daher ist eine Methode erforderlich, welche das Korrigieren, Erweitern
und Andern von Informationen gestattet. Da sich der Erstellungszeitpunkt einer Information
niemals dndert besteht eine zusitzliche Anforderung darin, auch unterschiedliche Versionen einer
gegebenen FTLight-Datei in einem Archiv zu verwalten.

Das wesentliche Mittel fiir das Hinzufiigen von Versionen zu bereits existierenden Dateien im
FTLight-Archiv ist das Zuweisen eines neuen Zeitstempels auf die Nullposition in der dem
aktuellen Zeitstempel untergeordneten Informationsmenge. Jede weitere Version wird das Gleiche
tun und der Nullposition in der dem aktuellen Zeitstempel untergeordneten Informationsmenge
einen neuen Zeitstempel zuweisen. Der Identifikator der Person, welche die Anderung
vorgenommen hat wird ebenfalls der neuen Informationsmenge zugewiesen, welche bereits den
Zeitstempel der Anderung auf der Nullposition eingetragen hat.

Beispiel:

EKD@JO63rx Dambeck.RSpectro, 1073217600
, Frequenz:GHz,10.600
,Bandbreite:kHz, 250

Etwa zwei Wochen spéter wird die Frequenzinformation durch eine Person mit dem Identifikator
kantz@wegalink.eu von 10.6 GHz auf 10550 kHz geéndert:

EKD@JO63rx Dambeck.RSpectro, 1073217600

, Frequenz:GHz,10.600

,Bandbreite:kHz, 250

0-0:1075123807, kantz@wegalink.eu, Frequenz:kHz, 10550

* Der zweite Informationsblock kann folgendermallen interpretiert werden:

* Diese Information gehort zum Identifikator EKD@JO63rx Dambeck.RSpectro
* Die urspriingliche Information ist mit dem Zeitstempel 1073217600 verkniipft
* Eine gednderte Version wurde mit dem Zeitstempel 1075123807 erzeugt

Der Identifikator der Person, welche die Anderung vornahm, ist kantz@wegalink.eu

* Die gednderte Version hat eine neue 'Frequenz: kHz, 10550

Zusammenfassend kann festgestellt werden, dass eine neue Version von einer bereits existierenden
Version dadurch erstellt wird, dass der Pfad des aktuellen Zeitstempels durch einen neuen
Zeitstempel erweitert wird. Weiterhin wird der Identifikator der Person, welche die Anderung

vornahm der neuen Informationsmenge hinzugefiigt. Ferner werden alle gednderten Elemente der
neuen Informationsmenge hinzugefiigt, so als ob sie auf der Ebene des ersten Zeitstempels wiren.

Version der FTLight-Spezifikation

Die FTLight-Spezifikation ist dem Ziel verpflichtet, dass sich die grundlegenden Regeln zum
Erzeugen von FTLight-Datenstrukturen niemals dndern. Dennoch wird sich die Spezifikation weiter
entwickeln, insbesondere zum Beispiel durch das Hinzufiigen von neuen Datentypen und weiteren
optimierten Datenkodierungen.

Im Hinblick auf die Langzeitnutzung (Jahrhunderte) wird angestrebt, dass aus einmal generierten
Datensammlungen durch eine KI auch ohne Informationen zur verwendeten FTLight-Spezifikation
allein aus dem inneren logischen Zusammenhang heraus sowohl Datenstrukturen als auch die
Bedeutung der Daten wieder regeneriert werden konnen.

Fiir das generische Verarbeiten von FTLight-Datensammlungen basierend auf der FTLight-
Spezifikation (Jahrzehnte) kann es jedoch von Interesse und niitzlich sein, zusitzlich zum Zeitpunkt
der Erstellung einer Datensammlung auch die zugrunde liegende Version der FTLight-Spezifikation
zu kennen. Dies kann (optional) durch Angabe des Datums der FTLight-Spezifikation nach dem
Zeitstempel der Erstellung eines Files/Streams und einem Leerzeichen erfolgen, zum Beispiel:
EKD@JO63rx Dambeck.RSpectro,1073217600 2004-01-12

Zeitsynchronisation

Das Anfordern eines Zeitstempels von einem anderen System erfolgt durch Ubertragung des IFTL
des anderen Systems (Empfanger) gefolgt vom eigenen IFTL (Absender).

Beispiel:

EKDRJO63rx Dambeck.RSpectro, EKD@IN58ve Poing.Lyra

Als Antwort wird ein Informationspaket erwartet, welches aufler den beiden IFTLs in umgekehrter
Reihenfolge und einem Zeitstempel mit der aktuellen lokalen Zeit des anderen Systems keine

weiteren Angaben enthilt. Dabei handelt es sich um ein TIME-Kommando. Dieses muss sofort
wieder ohne Verzogerung in gleicher Weise mit der aktuellen lokalen Zeit beantwortet werden.
Beispiel:

EKDQ@JIN58ve Poing.Lyra,EKD@JO63rx Dambeck.RSpectro,1607798473.123456789
EKDE@JO63rx Dambeck.RSpectro, EKD@JIN58ve Poing.Lyra,1607798473.234567890

Die Aufgabe von TIME-Kommandos ist die Ubertragung der lokalen Zeit des Absenders zu einem
Empfanger. Es obliegt im weiteren dem Empfinger, ob die {ibertragene Zeit als eigene lokale Zeit
iibernommen wird oder ob lediglich die Differenz zwischen den lokalen Zeiten des Absenders und
des Empfingers mit einer Referenz zum IFTL des Absenders fiir die weitere Kommunikation mit
diesem gespeichert wird. Insbesondere bei Kommunikation mit mehreren Seiten wird in der Regel
nur eine Gegenseite als Zeitnormal dienen. Fiir die anderen Kommunikationspartner wird lediglich
die Differenz zur eigenen lokalen Zeit mit einer Referenz zum IFTL der Gegenseite gespeichert.

Nach einer zweiseitigen TIME-Ubertragung kann der Initiator die Differenz zwischen der lokalen
Zeit der Gegenseite und der eigenen lokalen Zeit anhand der {ibertragenen Zeitstempel ermitteln.
Fiir das Erzielen einer hoheren Prézision bei der Zeitsynchronisation kann eine Serie von TIME-
Kommandos verwendet werden. Mittels statistischer Methoden konnen aus den registrierten Zeiten
fiir das Absenden und Empfangen der TIME-Ubertragungen deren mittlere Laufzeit ermittelt und
diese als Korrekturwert fiir die Zeitsynchronisation berticksichtigt werden.

Anfrage/Antwort-Verfahren fiir gespeicherte Daten

Zunichst soll der Vorgang des Sendens einer Anfrage und das nachfolgende Empfangen einer
Antwort beschrieben werden, wofiir anschlieflend ein Verfahren definiert wird:

« Die anfragende Seite sendet eine Anforderung nach einer Untermenge von gespeicherten,
statischen Daten, welche zu einem spezifizierten Identifikator gehoren

» Eine antwortende Seite hat die angefragten Daten und iibersendet diese an die anfragende Seite
« Die anfragende Seite ergénzt ihr FTLight-Archiv mit der erhaltenen Antwort
« Die anfragende Seite kann in schneller Folge Anfragen senden und Antworten erhalten

» Die Antwort wird in jedem Fall die Originaldatei mit unverdndertem Zeitstempel oder eine
Untermenge davon sein

« Es konnen mehrere Antworten zu ein und derselben Originaldatei im Ergebnis von
unterschiedlichen Anfragen eintreffen

« Mehrere Originaldateien bzw. Untermengen davon konnen im Ergebnis einer einzigen Anfrage
eintreffen

Anfragestruktur

Das Anfragen von Informationen von anderen Informationshierarchien besteht aus allgemeinen
Elementen, welche eine Anfrage identifizieren sowie dem Spezifizieren der jeweils nachgefragten
Information. Die Detailinformationen einer Anfrage miissen zwischen den beiden Seiten
abgestimmt sein, wéihrend die allgemeinen Anfrageparameter immer gleich bleiben. Eine Anfrage
wird mit den IFTLs von Empfanger und Absender eingeleitet und muss beim Absenden auf der
Position 0 unterhalb des Absenders in der Regel einen aktuellen Zeitstempel enthalten. Dieser ist
die Grundlage fiir eine fortlaufende Einschitzung der Zeitsynchronisation zwischen beiden Seiten.

Allgemeine Anfrageelemente

Das in der FTLight-Spezifikation festgelegte Anfrageelement (QUERY/EMPTY=96, Back-
Apostroph) symbolisiert die ,,Leere* welche eine Antwort provozieren soll, um die ,,Leere* zu
fiillen. Es stellt somit das allgemeine Anfrageelement dar, sobald es allein in der Position 0 in einer
beliebigen Informationsmenge auftaucht. In diesem Fall ist die anfragende Seite an der
Ubermittlung der vollstindigen Informationsmenge interessiert, welche sich im FTLight-Archiv der
antwortenden Seite an der entsprechenden Stelle befindet, einschlieBlich aller hierarchisch
untergeordneten Informationsmengen. Der Identifikator der anfragenden Seite wird dabei in der
Position 0 in der dem Anfrageelement untergeordneten Informationsmenge iibertragen.

Beispiel:
EKDRJO63rx Dambeck.RSpectro, ", EKD@JIN58ve Poing.Lyra,1607798473.123456789

Der Anfragesteller mit dem Identifikator EKD@JN58ve Poing.Lyra mdchte alle Informationen
erhalten, welche sich unterhalb des Identifikators EKD@JO63rx_Dambeck.RSpectro befinden. Da
es sich hierbei um eine riesige Datenmenge handeln konnte, wéren einige Einschrankungen zur
Zeitperiode angebracht, um die Grofle der erwarteten Antwort einzuschrinken. Jedoch gehort dies
bereits zu den speziellen Elementen, welche beide Seiten miteinander vereinbaren miissen.

Ein allgemeines Element fiir das Begrenzen einer Anfrage ist das Hinzufligen von ausgewdihlten
Elementen innerhalb der Informationsmenge, welche das Anfrageelement auf der ersten Position
enthilt. Dies begrenzt die Anfrage auf die Untermenge an Daten, welche sich unterhalb der
angegebenen Elemente in der Informationshierarchie befindet.

Beispiel:

EKD@JO63rx_Dambeck.RSpectro:’,Frequenz,Bandbreite
0-0,EKDQ@JINS58ve Poing.Lyra,1607798473.123456789

Im obigen Beispiel werden nur die Frequenz und die Bandbreite angefragt. Dies wiirde die grof3e
Menge an Messdaten ausschlieBen, welche zum Beispiel unterhalb des Datenelementes angeordnet
sind. Es wiirden jedoch alle Dateien zuriickgesendet, wo sich die Elemente Frequenz und
Bandbreite auf der zweiten Ebene, genau unterhalb vom Identifikator befinden. Dies konnte
ebenfalls noch eine grofle Datenmenge sein, so dass auch in diesem Fall noch eine Einschrinkung
beziiglich des Zeitabschnittes sinnvoll wire.

Ein gerade in Ubertragung befindlicher Antwort-Stream kann jederzeit durch die anfragende Seite
gestoppt werden. Das allgemeine Element zum Stoppen einer Dateniibertragung ist ein
Anfrageelement (QUERY) an Stelle des anfragenden Identifikators. Dieser wird eine Ebene tiefer
auf der Position 0 der dem zweiten Anfrageoperator untergeordneten Informationsmenge gesetzt.

Beispiel:

EKD@JO63rx Dambeck.RSpectro, *, ', EKD@JIN58ve Poing.Lyra,1607798473.123456789
Das obige Beispiel stoppt den Datenstrom, der von der antwortenden Seite mit dem Identifikator
EKD@JO63rx Dambeck.RSpectro an die anfragende Seite mit dem Identifikator

EKD@JN58ve Poing.Lyra gesendet wird.

Anforderung von Identifikatoren

Ein einzelnes Back-Apostroph gefolgt vom Identifikator der anfragenden Stelle fordert eine Liste
aller Identifikatoren an. Die Antwort besteht in diesem Fall aus einer Liste von Identifikatoren
zusammen mit dem am weitesten zuriickliegenden Zeitstempel fiir jeden Identifikator.

Beispiel:
' ,EKDQ@JNS58ve Poing.Lyra,1607798473.123456789

Die Antwort auf diese Anfrage konnte wie folgt aussehen:
EKD@JO63rx Dambeck.RSpectro, 1073212000

Die Antwort informiert die anfragende Seite iiber die Verfiigbarkeit von Daten zum Identifikator
EKD@JO63rx_Dambeck.RSpectro beginnend ab dem Zeitpunkt, welcher durch den Zeitstempel
1073212000 in Sekunden nach dem 1. Januar 1970 in UTC angegeben ist.

Zeiteinschrinkungen

Eine Zeiteinschrinkung gehdrt zu den zusétzlichen Elementen des Anfrage/ Antwort-Verfahrens,
welche zwischen den beiden miteinander kommunizierenden Seiten vereinbart werden muss. Eine
Struktur dafiir konnte wie folgt aussehen:

EKD@JO63rx Dambeck.RSpectro, " ,EKDEIN58ve Poing.Lyra,1607798473.123456789
0-0:Start:UTC,1073217400

:Ende:,1073217800

:Intervall:Sekunden, 20

Im obigen Beispiel wird ein 400 Sekunden langer Zeitabschnitt angefordert und die Messwerte
werden in einem Zeitintervall von 20 Sekunden erwartet. Solche Daten eignen sich zum Beispiel fiir
eine Voransicht.

Arrayabfragen

Die Abfrage eines Arrays an einer adressierten Position kann durch eine Adressangabe weiter
spezifiziert und dadurch eingeschrinkt werden, zum Beispiel:
EKDQ@JO63rx Dambeck.Array,Data 3 ,EKDQ@JIN58ve Poing.Lyra,1607798473.123456789

schriankt die Abfrage auf das dritte Element (Untermenge) eines Arrays an der Position 'Data’ ein.

Anfragen, Abonnieren und Schreiben von aktuellen Daten

Nachfolgend wird ein Verfahren zum Anfragen und Abonnieren von aktuellen Daten beschrieben,
wodurch bestehende als auch neu entstehende statische und dynamische Daten (,,Ereignisse®)
automatisch unmittelbar an eine anfragende Seite {libertragen werden:

« die anfragende Seite er6ffnet eine Verbindung zu einer Informationshierarchie, von der wéihrend
der Dauer der Verbindung Daten automatisch empfangen werden sollen

« die anfragende Seite spezifiziert ein Datenelement in der Informationshierarchie, bei dessen
Anderung unter bestimmten Bedingungen eine Ubertragung zur anfragenden Seite erfolgt

« die anfragende Seite legt fest, ob die Ubertragung von geiinderten Daten nur einmalig oder bei
jeder Anderung erfolgen soll

« bei Anforderung aller Anderungen kann die Ubertragungshiufigkeit auf einen fest
vorgegebenen Zyklus eingeschriinkt werden, wobei eine Ubertragung des aktuellen Wertes im
vorgegebenen Zyklus auch dann erfolgt, wenn keine Anderung vorliegt

« zum spezifizierten Datenelement kdnnen auch Unterelemente mit iibertragen werden wenn dies
beim Abonnieren so festgelegt wird

« eine Ubertragung wird auch dann durchgefiihrt, wenn sich eines der Unterelemente gefindert
hat, falls beim Abonnieren Unterelemente mit angefordert wurden

« neben einem einzelnen Datenelemente und dessen Unterelementen konnen auch Datensétze
abonniert werden, wie sie beim Synchronschreiben entstehen

« die anfragende Seite kann einen Startzeitpunkt festlegen, ab wann mit der einmaligen oder
mehrmaligen Ubertragung von geéinderten Daten begonnen werden soll

« ein Abonnement fiir gednderte Daten endet wenn die anfragende Seite dieses aufthebt oder wenn
die Verbindung zur Informationshierarchie von einer der beiden Seiten beendet wird.

Datenelement spezifizieren

Das Anfordern eines Abonnements filir gednderte Daten erfolgt, wie in der FTLight-Spezifikation
fiir Anfragen festgelegt, durch ein Anfrageelement (QUERY=96, Back-Apostroph) auf der Position
des angeforderten Datenelementes. Die Information auf der Position 0 unterhalb des
Anfrageelementes legt die Hiufigkeit der Ubertragung fest.

Falls unterhalb des Anfrageelementes keine Information vorhanden ist, dann erfolgt eine einmalige
unmittelbare Ubertragung des Wertes an die anfragende Seite. Wenn dagegen eine Zahl auf der
genannten Position steht, dann legt diese die Anzahl der Sekunden eines Ubertragungszyklus fest,
wobei 0 das Ubertragen jeder Anderung bewirkt, zum Beispiel

EKDE@JO63rx Dambeck.RSpectro, Frequenz,
EKD@JO63rx Dambeck.RSpectro, Frequenz, *, 0
EKD@JO63rx Dambeck.RSpectro, Frequenz, ,2.5

Die erste Zeile bewirkt eine einmalige Abfrage der aktuellen Frequenz. Die zweite Zeile bewirkt,
dass alle Anderungen der Frequenz unmittelbar zuriick gegeben werden. Die dritte Zeile gibt
Anderungen in einem festen Raster von 2.5 Sekunden zuriick, wobei eine Ubertragung des Wertes
in diesem Zeitraster auch erfolgt, wenn keine Anderungen der Frequenz erfolgt sind.

Bei Angabe eines Ubertragungszyklus kann zusitzlich darunter auf der Position 0 ein Zeitpunkt fiir
den Start der Ubertragung in Sekunden angegeben werden. Falls die Zeitangabe in der
Vergangenheit liegt dann wird die Angabe als Zeitraster behandelt, z.B. 1 bedeutet den Start der
Ubertragung zu Beginn der nichsten Sekunde. Eine 0 dagegen beginnt die Ubertragung mit der
nichsten Anderung des Wertes, zum Beispiel wenn eine einmalige Ubertragung angefordert wurde.
Eine Zeitangabe in der Zukunft startet die Ubertragung mit Erreichen der angegebenen Zeit.

EKD@JO63rx Dambeck.RSpectro, Frequenz, *,,0

EKD@JO63rx Dambeck.RSpectro, Frequenz, *,0,1373217800

EKD@JO63rx Dambeck.RSpectro, Frequenz, *,2,1

Die erste Zeile bewirkt eine einmalige Ubertragung der Frequenz bei deren nichsten Anderung. Die
zweite Zeile bewirkt, dass ab dem angegebenen absoluten Zeitpunkt (Sekunden nach dem 1. Januar
1970 UTC) alle Anderungen iibertragen werden. Mit der dritten Zeile wird eine Ubertragung im 2-
Sekunden-Zeitraster beginnend ab der nidchsten vollen Sekunde gestartet.

Wenn statt eines einzelnen Datenelementes alle Unterelemente eines Parent-Elementes iibertragen
werden sollen dann wird dies durch einen Doppelpunkt ":' zum Eintragen des Anfrageelementes auf
der Position 0 unterhalb des Parent-Elementes bewirkt, zum Beispiel:

EKD@JO63rx Dambeck.RSpectro, Frequenz:"

EKDQ@JO63rx Dambeck.RSpectro, Frequenz: :0:1373217800

EKDE@JO63rx Dambeck.RSpectro,Frequenz: :2:1

Mit der ersten Zeile wird wie zuvor ein Anfrageelement auf die Position eines Frequenzwertes
gesetzt, jedoch werden bei der Ubertragung auch alle Unterelemente des Parent-Elementes
"Frequenz' mit erfasst und bei jeder Anderung von einem der Unterelemente an die anfragende Seite
iibertragen. Zum Ergidnzen des Anfrageelementes mit einem Zyklus und Startzeitpunkt miissen in
diesem Fall ebenfalls Doppelpunkte ;' verwendet werden um jeweils die Position 0 zu erreichen.

Beim Synchronschreiben werden mehrere Datenelemente referenziert, welche gleichzeitig mit
neuen Daten beschrieben werden. Das Abonnieren von Datensitzen erfolgt durch Eintragen des
Anfrageelementes auf Position 0 des '@' Operators fiir das Synchronschreiben, zum Beispiel:
EKDE@JO63rx Dambeck.RSpectro

Zeit,Flux, Temperatur

[Sekunden seit 1.1.1970]1, [Jy]l,[°C],@:"

Ergénzende Angaben zum Zyklus und zum Startzeitpunkt werden wie bei einem einzelnen
Datenelement jeweils auf Position 0 unterhalb des Anfrageelementes erginzt, zum Beispiel
0-3-0:":2:1

Zum Beenden eines Abonnements wird an der Position 0 unterhalb des Anfrageelementes ein
weiteres Anfrageelemente eingetragen, zum Beispiel:

EKD@JO63rx Dambeck.RSpectro, Frequenz, *,

0-3-0:":"

Die Ubertragung von Anderungen der Frequenz oder eines Datensatzes werden dadurch beendet,
auch wenn die Verbindung zur Informationshierarchie noch weiter bestehen bleiben sollte.

Schreiben von Daten und Kommandos

Neben den beschriebenen Parametern zum Abonnieren von Daten kdnnen auch beliebige Daten und
insbesondere Kommandos an eine Empfangerseite iibertragen werden.

- work in progress -

Laufzeitinformationen

- work in progress -

EKDQ@JIN58nc Tirkenfeld.Algorithm,1549200792
,volatile,

,volatile, *, #12345

Algorithmen
EKD@JIN58nc_ Tiurkenfeld.Algorithm,1549200792,<log level>,<message>,<context>

,big numbers, *,0,<implementation>
,+ s<#hashAlgorithml>,<#hashClientl>

;s s<#thashAlgorithmN>, <#hashClientN>

Clientl-Bereich
,+ s<#hashClientl>,<#hashAlgorithml>, <workspace 1>

ClientN-Bereich
;0 r<#hashClientN>,<#hashAlgorithmN>, <workspace 1>

Kommandos (an #hash-Elemente):
« RUN
« WAIT
« GET
« SET
« STOP
« REMOVE

Benchmarking

Das Benchmarking der FTLight-Referenzimplementierung in C++ erfolgt im Cosmos-Framework
mit dem VS2022 Compiler. Die Zielstellung des Cosmos-Framework besteht darin, die
Abhingigkeit von Bibliotheken auf die Standardbibliotheken des verwendeten Compilers zu
beschrinken.

Das Testprogramm kann mit einem VS2022-Compiler auf folgendem Pfad gedffnet und erstellt
werden:

...\FTLightApp\software\Apps\TestApps\CmModuleTest

Untenstehend wird die Ausgabe des Testprogramms (Release) fiir die Service-Module des Cosmos-
Framework und fiir die FTLight-Module gezeigt:

¢ Initialize - Initialisierung des Modultest

* CmString - Stringfunktionen des Cosmos-Framework

* CmbDateTime - Zeit- und Datumsfunktionen des Cosmos-Framework

¢ CmlIFTL - IFTL-Funktionen fiir FTLight

* CmStringFTL - Stringfunktionen fiir FTLight

¢ CmMatrixFTL - Matrix-Funktionen fiir die RAM-Reprisentation von FTLight-Daten
¢ CmValueFTL - Value-Funktionen fiir die Darstellung von FTLight-Werten

* CmValueINI - Value-Funktionen fiir die Darstellung von persistenten FTLight-Werten

Das Testprogramm fiihrt eine Uberpriifung auf Memory-Leaks durch. Werte von 0.0 bei ,,items*
und ,,bytes* bedeuten, dass kein Memory-Leak vorliegt.

Fiir die getesteten Funktionen wird ein Laufzeit-Benchmark in der Regel dadurch ermittelt, dass die
Funktion mehrfach ablduft und die gemessene Gesamtlaufzeit durch die Anzahl der Durchléufe
geteilt wird. Dadurch wird der Einfluss von Caching und von Setup-Zeiten minimiert.

Untenstehende Benchmarks wurden auf einem M2-Prozessor ermittelt. Zum Beispiel wurde fiir die
Wandlung von Bindrwerten in das MCL-Format ein Wert von 0.9 ns/Byte ermittelt, was einem
Durchsatz von mehr als 1 GByte/s entspricht. Fiir die Wandlung von Bindrwerten in das FTL-
Format wurden auf diesem Prozessor dagegen 2.7 ns/Byte bendtigt. Bei ,,ref* sind als Referenz die
absolut besten Werten aufgefiihrt, welche auf allen getesteten Prozessoren erreicht werden konnten.

Cosmos Module test: CmModuleTest

Initialize...

Memory items= 0.000k (dif: 0) bytes= 0.0k (dif: 0)
CmString...

Memory items= 0.000k (dif: 0) bytes= 0.0k (dif: 0)
CmDateTime. ..

Memory items= 0.000k (dif: 0) bytes= 0.0k (dif: 0)
CmIFTL...

Memory items= 0.000k (dif: 0) bytes= 0.0k (dif: 0)
CmStringFTL. ..

bin2FTL / Byte: 2.7 ns ref: 1.4 ++

bin2MCL / Byte: 0.9 ns ref: 0.9

bin2DIF (16) / Byte: 3.4 ns ref: 1.5 ++

bin2DIF (64) / Byte: 9.3 ns ref: 2.8 ++

encodeVAL / Run: 3607 ns ref: 1092 ++

decodeVAL / Run: 62.9 ns ref: 46.4

encode no exponent/ Run: 2293 ns ref: 702 ++

decode no exponent/ Run: 42.7 ns ref: 20.0 ++
encodeTIME / Run: 1820 ns ref: 556 ++
decodeTIME / Run: 42.0 ns ref: 16.8 ++
Memory items= 0.000k (dif: 0) bytes= 0.0k
CmMatrixFTL. ..

runtime double[2000] read 17.
runtime double[2000] write 11.
runtime double[2000] write/read 13.
runtime double[1000000] write/read 19.
runtime matrix new/delete (10000) 7459
runtime matrix 3x4x5 write/read 3712
runtime matrix 26D write/read 80257
Memory items= 0.000k (dif: 0) bytes= 0.0k
CmValueFTL. ..

runtime[1000] A + B 64-bit

runtime[1000] C +=A 64-bit

runtime[1000] A - B 64-bit

runtime[1000] B - A 64-bit

runtime[1000] C -=A 64-bit

runtime[1000] A * B 64-bit

runtime[1000] C *=A 64-bit

runtime[1000] D / B 64-bit

runtime[1000] D /=B 64-bit

runtime[1000] D % B 64-bit

runtime[100] A + B bignum 100 digits
runtime[100] A - B bignum 100 digits

runtime lOO] B A bignum 100 digits

runtime [10] A B bignum 100 digits
runtime[10] D B bignum 100 digits
runtime[100] A + B bignum 240 digits
runtime[100] A - B bignum 240 digits

runtime lOO] B - A bignum 240 digits

runtime [10] A * B bignum 240 digits
runtime[10] D / B bignum 240 digits

runtime [10] RSA-100 330 bits P * Q

runtime [10] RSA-100 330 bits RSA/P
runtime[10] RSA-130 430 bits P * 0
runtime[10] RSA-130 430 bits RSA/P
runtime[10] RSA-150 496 bits P * 0
runtime[10] RSA-150 496 bits RSA/P

runtime [10] RSA-174 576 bits P *Q
runtime[10] RSA-174 576 bits RSA/P

(dif:
1 ns
2 ns
6 ns
3 ns
.3 ns
.5 ns
.1 ns
(dif:

5.0

4.7

4.5

5.4

4.8

36.3

35.0

171.6

171.6

171.2

48.2

41.8

40.3

4138.1

7983.7

139.3

131.0

133.4

29193.4

53483.5

972.1

2048.6

1668.8

3361.7

2190.4

4601.2

3153.5

6002.1

us
us
us
us
us
us
us
us
us
us

us
us
us
us
us

us
us
us
us
us

us
us

us
us

us
us

us
us

runtime[10]
runtime[10]

runtime[10]
runtime[10]

runtime[10]
runtime[10]

RSA-200
RSA-200

RSA-230
RSA-230

RSA-232
RSA-232

Memory items= 0.000k

CmValueINI...

Memory items= 0.000k

663 bits
663 bits

762 bits
762 bits

768 bits
768 bits

(dif:

(dif:

CmTest finished SUCCESSFULLY

0)

0)

P *Q
RSA/P

P *Q
RSA/P

P *Q
RSA/P

bytes= 0.0k

bytes= 0.0k

4150.
7932.

5709.
11627.

5967.
11023.

(dif:

(dif:

us
us

us
us

us
us

Appendix A

A.1 Beispiel fiir das Speichern von mehrstufigen Metadaten vor

einem Interferometrie-Datenblock

MCL@JN76ec Ljubljana.SIDI,1108598400:FTLight,2005-03-03

,9lobal metadata tagl:iteml,item2,...
,global metadata tag2:iteml,item2,...
,global metadata tagN:iteml,item2,...
,metadata for channell,metadata tagl: iteml,
, ymetadata tag2:iteml, item2, ...

, ymetadata tagN: iteml, item2, ...

item2, ...

,metadata for channel2,metadata tagl: iteml,item2, ...

, ymetadata tag2: iteml,item2, ...

, ymetadata tagN: iteml, item2,...

,metadata for channelN,metadata tagl: iteml,
, ymetadata tag2: iteml,item2, ...

, ymetadata tagN: iteml, item2, ...
,correlation values for baseline 1

:Time, Correlation

:1108598400.123,0.9876
:1108598400.124,0.9875
:1108598400.125,0.9877

,correlation values for baseline 2
:Time, Correlation
:1108598400.123,0.9836
:1108598400.124,0.9835
:1108598400.125,0.9837

,correlation values for baseline 3
:Time, Correlation
:1108598400.123,0.3476
:1108598400.124,0.3475
:1108598400.125,0.3477

item2, ...

A.2 Beispiel fiir einen Mehrkanalempfanger mit wahlfreier

Kanalselektion

Frequenzkanile werden wahlfrei und in unregelméfigen Zeitintervallen abgefragt. In diesem Fall
muss die volle Frequenz- und Zeitinformation mit jedem der Messwerte abgespeichert werden. Dies

konnte folgendermalen fiir eine erste Basislinie und in dhnlicher Weise fiir andere Basislinien

aufgebaut werden:

EKDE@JINS58ve Poing.RSpectro,1108598400:FTLight,2005-03-03

,Daten,Basisliniel: [m],12.35
:Zeit,Frequenz, Signalstarke

: [Sekunden seit 1970-01-01], [GHz], [0..4095],@

:1109462400.111,10.610,2745
:1109462400.239,10.670,2745
:1109462400.377,10.655,2745

A.3 Beispiel fiir einen Mehrkanalempfanger mit regelmifliger
Kanalselektion

Eine vordefinierte Frequenzliste wird in regelméfBigen Zeitabstinden abgetastet. In diesem Fall ist
es ausreichend, die Liste aller Frequenzen nur einmal anzugeben und jeweils die Startzeit fiir einen
ganzen Block von Abtastwerten hinzuzufiigen. Dies kann folgendermallen erfolgen:

EKD@JIN58ve Poing.RSpectro,1108598400:FTLight,2005-03-03
,Daten,Basisliniel: [m],12.35
:Zeit,Freql,Freq2, Freg3, Freqg4, Freg5

: [Sekunden seit 1970-01-011, [GHz], [GHz], [GHz], [GHz], [GHz]
:gleiche Zeitintervalle,10.630,10.635,10.640,10.645,10.650,4
:1109462400.100,2736,2850,2473,2945,2791
:1109462500.100,2335,2457,2272,2628,2437
:1109462400.100,2533,2593,2311,2593,2692

2025-12-30
2025-12-28
2025-12-17
2025-12-16
2025-12-15
2025-12-14
2025-12-13
2025-12-12
2025-12-11
2025-12-10
2025-12-09
2025-12-08
2025-12-07
2025-04-05
2025-02-05
2024-11-21
2024-11-09
2024-11-05
2024-09-18
2024-07-15
2023-06-18
2022-05-15
2022-01-18
2021-02-05
2021-01-25
2021-01-20
2020-12-13
2020-09-24
2018-03-24
2018-01-07
2016-05-21
2015-09-26
2015-08-08
2015-05-16
2015-04-11

Entwicklungsverlauf

Konsolidierung der Integration von KI-Vorschldgen

Evaluieren von KI-Vorschliagen

Reihenfolge der KI-Vorschlidge inhaltlich angepasst

Versionsverlauf eingefiihrt und Dokument tibersichtlicher gestaltet
KI-Vorschlédge in eine ToDo-Liste aufgenommen, (Fortsetzung)
Benchmarking und FTLight-Referenzimplementierung ergéanzt

Einladung zur Mitarbeit und Erklidrung zur OpenSource-Lizenz
Kategorisierung der KI-Vorschldge, Ergidnzung ToDo-Liste (Fortsetzung)
KI-Vorschlédge in eine ToDo-Liste aufgenommen, (Fortsetzung)
KI-Vorschlédge in eine ToDo-Liste aufgenommen, KI-Statements ergéinzt
KI-Hinweis zur Mehrfachnutzung von Steuercodes diskutiert und erldutert
KI-Vorschlag zur Version der Spezifikation im FTLight-File/Stream ergénzt
Review durch 7 KI-Systeme ergénzt

FTLight als OpenSource auf der Ebene einer Spezifikation beschrieben
Binérer Datentyp (FTL): Layout-Korrektur beim => Operator

Datentypen umbenannt: MCL, FTL, TXL, NUM, DIF, FPGA, UNIT, TIME
Fiillen von Tabellenspalten mit formatierten Arrays ergdnzt

Adressierung von Gruppen mit gleichem Identifikator eingefiihrt
Identifikator-FTL-Datentyp auf IFTL umbenannt

Link zur Anwendungsentwicklung ,,FTLightApp* ergdnzt
Identifikator-Datentyp IFTL auf jenseits des Universums erweitert
Algorithmische Antwort zum Realisieren aktiver Elemente eingefiihrt
verschrinkte DIF Messwerte bei geringer Schwankungsbreite eingefiihrt
Synchronschreiben weiter erldutert und detaillierter beschrieben
Darstellung von Zeitangaben und physikalischen Werten vervollstandigt
Zeitangaben vor 1970-01-01 00:00:00 UTC als negative Zeiten erginzt
Zeitsynchronisation, Zeitstempel bei Anfragen als verbindlich festgelegt
Format DTI_DIF fiir differenzielle Kodierung von Datenstromen ergénzt
Kodierung physikalischer Einheiten und Kombination von Formaten ergénzt
Arrays von Zahlen/Text mit beliebiger Anzahl von Dimensionen ergédnzt
Abonnieren von aktuellen Daten bei Anderungen (Ereignissen)

Neuer Arbeitstitel ,,FTLight* (Faster than LIGHT, Schneller als LICHT)
Rahmen fiir Entropie-Modus mit Datenraten bis nahezu 100% der Bandbreite
Entropie-Modus fiir hohe Datenraten bis zu 87% der Bandbreite, z.B FPGA

Fortsetzen eines vorherigen Synchronschreibens erginzt

2014-11-22
2014-11-18
2014-11-16
2014-11-02
2014-11-01
2014-10-31
2005-04-16
2005-03-20
2005-03-16
2005-03-09
2005-03-06
2005-03-03
2005-02-26
2005-02-20
2005-02-17
2004-03-10
2004-01-29
2004-01-22
2004-01-21
2004-01-20
2004-01-19
2004-01-18
2004-01-12
1997-09

Priifsumme am Zeilenende optional festgelegt

Mehrdeutigkeit fiir Datentyp am Zeilenanfang aufgelost

Daten Update/Speichern gedndert (Danke an unsere Partner fiir die Hinweise)
Erlduterungen zum Konzept ergénzt, Beispiele konsolidiert

Identifikator auf universelle Eindeutigkeit erweitert

Cosmos TOKEN, LINK erginzt, an neue Rechtschreibung angepasst
Entwerten von Sonderzeichen auf Backslash geéndert

Datentyp fiir die Darstellung von Werten ergénzt
Framework-Funktionalitéit erginzt

Zeitdatentyp erginzt

Datentypen, Kapselung, Arrays und schnelle Bindrsignalkodierung ergianzt
Zahlendarstellung im Bindrformat ergianzt

Beispiele fiir Metadaten und Mehrkanalempfénger ergédnzt

Detaillierte Festlegungen zu Zahlenformaten

Hexadezimalzahlen als Format ergénzt, Punkt im Identifikator

Einfiihrung mit allgemeinem Uberblick zum Zweck ergiinzt
Versionsverwaltung ergénzt

Request/Response durch Datenflusselemente erginzt
Request/Response-Fahigkeiten erginzt

FTLight-Speicherorganisation ergénzt

Unterstiitzung flir Datenintegritit ergdnzt

Erkliarung fiir ‘FTLight-Collection’ ergénzt und Adressverwendung erweitert
Erste Version basierend auf Diskussionen in der ERAC-VLBI-Gruppe

Anforderungen flir Datenaustausch vom 1. ERAC-Kongress in Heppenheim

KI-Vorschliage zu Modifikationen und Erweiterungen zur
Verbesserung der Anwendbarkeit

Von den 7 KI-Systemen wurden teils {ibereinstimmend die nachfolgend aufgelisteten Hinweise und
Vorschlidge generiert. Die bereits dargestellt.

A - FTLight File/Stream-Datenprotokoll

* Umfassende Beispiele fiir den Entropie-Modus. Deutlicher erkldren, wie der Entropie-Modus mit
der allgemeinen hierarchischen Struktur interagiert. Prézisierung der ,,Vermischt"-Definition.
(DeepSeek R1)

* Ein klares, umfassendes Beispiel fiir die Bit-Représentation eines vollstandigen Datenpakets im
Entropie-Modus. Die Abfolge von Rahmen, Adressierung und Informationsbits in einem
durchgingigen Beispiel verdeutlichen. (Claude 4.5)

* Wie wird im Entropie-Modus die "Anzahl der 1-Bits" in einer variablen Lange kodiert? Und wie
kann eine Linge 0 sein? Hier bedarf es einer klareren Definition und eines Beispiels. (Gemini
2.5)

e Terminologie und Mechanik des Entropie-Modus kldren, insbesondere in Bezug auf "kein
Vorhalten von Datensdtzen" und die "Anzahl der 1-Bits" zur Rahmenlénge. Definieren, wie die
"Lange N" (Anzahl der Bits fiir die Adressierung) selbst kodiert wird, und Bereitstellen eines
klaren Beispiels mit Bit-Mustern und deren Dekodierung. (Gemini 2.5)

* Ergédnzung des Entropie-Modus zur Steigerung der Effizienz um einen "Patch"-Mechanismus,
der angibt, welche Bit-Bereiche einer Zeile aktualisiert werden sollen. (GPT-40)

* Die Aussage, dass der Entropie-Modus "nicht mit anderen Elementen vermischt werden" kann
und "nur Daten fiir diesen einen IFTL iibertragen werden", ist eine signifikante Einschrinkung
der ansonsten flexiblen Hierarchie. Dies deutet auf einen spezialisierten Modus hin, der
moglicherweise eine Abkehr von der allgemeinen FTLight-Struktur erfordert und dessen
Integration in das Gesamtkonzept (z.B. bei der Verarbeitung von Metadaten) nicht vollstindig
klar ist. (GPT-5.1)

Die Adressierung "nur Knoten der jeweils untersten Ebene der Informationshierarchie" und
"Eltern-Knoten eines Ringpuffers auf unterster Ebene" ist sehr spezifisch. Ein Beispiel oder eine
klarere Definition dieser "untersten Ebene" im Kontext einer typischen Anwendung geben.
(GPT-5.1)

Kléren, wie Metadaten, die nicht direkt zu den hierarchischen Nutzdaten gehoren, im Entropie-
Modus behandelt werden kdnnen. Eine Moglichkeit wére ein separates Metadaten-Sub-Stream
oder eine Moglichkeit, Metadaten-Blocke zu interspersieren, die explizit vom Entropie-Modus
ausgenommen sind. (GPT-5.1)

Unterstiitzung fiir kryptografische Signaturen und Authentifizierung. (Claude 4.5)

Integration von optionalen Sicherheitslayern. Dies konnte DTIAUTH (fiir Authentifizierung und
Autorisierung von Zugriffen auf Datenpfade) und DTIENC (fiir verschliisselte Datenblocke)
umfassen. (DeepSeek R1)

Ergénzung des IFTL um optionale Felder fiir Public Keys oder Zertifikate und die Einfiihrung
von DTIAUTH oder DTISIGNATURE fiir digitale Signaturen von Datenpaketen. (GPT-40)

Einfiihrung eines DTIENCRYPT, das angibt, dass der nachfolgende Binirdatenblock
verschliisselt ist und welche Verschliisselungsmethode verwendet wurde. (GPT-40)

Transaktionsmanagement und atomare Schreiboperationen in die Spezifikation aufnehmen.
(Claude 4.5)

Formale Beschreibung der Syntax, z.B. mittels Extended Backus-Naur Form (EBNF) oder einer
vergleichbaren Notation. Fiir den Binérteil konnten Metasprachen wie ASN.1 (Abstract Syntax
Notation One) oder moderne Ansédtze wie Protocol Buffers oder FlatBuffers verwendet werden.
(DeepSeek R1)

Formale Syntaxbeschreibung (EBNF) fiir die Textreprdsentation und eine bitgenaue formale
Beschreibung der Bindrformate. (Claude 4.5)

Ergidnzung der Spezifikation um eine formale Grammatik (z.B. in BNF oder EBNF) zur
Erhohung der Eindeutigkeit fiir Parser-Entwickler und fiir das Aufdecken eventueller logischer
Inkonsistenzen, die in beschreibendem Text {ibersehen werden konnten. (GPT-40)

Formale Grammatik (z.B. EBNF) fiir die FTLight-Syntax erstellen. (Grok 4.1)

Formaler Zustandsautomat oder eine EBNF-Definition des Parsings der Doppeldeutigkeiten von
Komma (44) und Semikolon (59). (DeepSeek R1)

Detaillierter erldutern, in welchen Kontexten die Trennzeichen als Pfaderweiterung und wann als
Beginn einer neuen Informationsmenge interpretiert werden. (GPT-5.1)

"FTL-kodierte Werte" im IFTL und die damit verbundenen mdéglichen Daten (z.B. ob auch
Zahlen gemeint sind) klarer definieren. (Claude 4.5)

Explizit machen, welche Kombinationen bei der Kaskadierung von Datentypen wie DTIUNIT
und DTIFTL zuléssig sind und wie die Reihenfolge der Interpretation bei komplexen
Kaskadierungen ist. (Claude 4.5)

Die Bedeutung und Behandlung von leeren Elementen im Kontext der Datenstruktur und des
Parsers sollte explizit beschrieben werden. (Claude 4.5)

Einheitliche Adressierung von Arrays. Die Regeln fiir die Adressierung von Teilmengen
(,,Zahlen2-1") sind spezifisch und sollten liickenlos sein. (Claude 4.5)

Klarstellen, dass die aktuelle Spezifikation ohne die offene Aufgabe ,,Uberschusskombinationen
zur Kompression und erweiterte Funktionen" bereits funktionsfdhig ist und diese nur ein
potenzielles Erweiterungsfeld darstellen. (DeepSeek R1)

Verdeutlichung der genauen Rolle von FTL innerhalb von NUM und wie komplexe Zahlen (z.B.
mit Exponenten) intern in FTL-Symbole zerlegt werden. (DeepSeek R1)

Im "Entwicklungsverlauf" oder in einem Vorwort noch expliziter machen, welche Teile als
prototypisch oder explorativ angesehen werden. (DeepSeek R1)

Explizite Definition von "Stream-Headern" und "Stream-Records", die iiber die reine
Dateistruktur hinausgehen. Einfithrung von Mechanismen fiir "Event-Time" und "Processing-
Time" in den Zeitstempeln, um die Verarbeitung von Echtzeitdaten zu verbessern. Ggf. ein
DTIEVENT Datentyp, der auslosenden Ereignissen spezifische Metadaten zuweisen kann.
(DeepSeek R1)

Die Spezifikation noch stérker auf die Bit-Ebene abstellen, um die ultimative Effizienz zu
erreichen, insbesondere fiir FPGA-Implementierungen. Die "Offene Aufgabe" des FTL-
Datentyps explizit mit Bit-Manipulationen (z.B. Run-Length Encoding fiir Null-Bit-Sequenzen)
konkretisieren. (DeepSeek R1)

Eine Referenzimplementierung (oder detaillierte Blaupausen) von kritischen Teilen des
Protokolls in einer Hardware Description Language (HDL wie VHDL/Verilog) erstellen. Dies
konnte sich auf die Kodierung der DTIs, den Entropie-Modus oder die CRC-Berechnung
konzentrieren. (DeepSeek R1)

Definition von optionalen "Checkpoint-Markern" im Datenstrom, die es ermoglichen, einen
Stream von einem bestimmten Punkt aus neu zu starten oder zu verifizieren, ohne den gesamten
Stream neu verarbeiten zu miissen. (DeepSeek R1)

Robustheit der Hierarchie bei Datenkorruption verbessern durch einen optionalen ,,Hierarchie-
Checkpoint®. Ein spezielles Zeichen oder DTI-Eintrag, der einen Checkpoint signalisiert und
eine Priifsumme iiber die aktuelle Pfadstruktur bis zu diesem Punkt enthilt. Im Falle eines
Fehlers konnte der Parser zum letzten Checkpoint zuriickspringen. (GPT-40)

Entwicklung einer umfangreichen Testsuite mit validen und invaliden FTLight-Dateien/Streams
sowie Tools zur Validierung der Konformitit von Implementierungen mit der Spezifikation.
(DeepSeek R1)

Die Spezifikation sollte klarer definieren, wie die "Unbegrenztheit" technisch umgesetzt wird
(z.B. durch Langenprifixe oder spezielle End-Marker). (Gemini 2.5)

Mechanismus des impliziten Verweises im Beispiel fiir Frequenz (alt/neu) klarer definieren.
(DeepSeek R1)

Handling von Backslash-Entwertung. Es stellt sich die Frage, wie ein Literal-Backslash im Text
selbst dargestellt wird — muss dieser dann \ sein? (Gemini 2.5)

Explizit erwdhnen, was passiert, wenn der Backslash selbst als Literal benotigt wird und
tiblicherweise durch \\ entwertet wird. (GPT-5.1)

Regel fiir die Entwertung des Backslash-Zeichens selbst hinzufiigen (z.B. \\ fiir einen literal
Backslash). (GPT-5.1)

Die Verwaltung der Dynamik bei der dynamischen Bitbreite von DTI DIF muss sehr prazise
definiert sein, um Inkonsistenzen bei der Interpretation zu vermeiden. (Gemini 2.5)

Genaue Strategie zur Sicherstellung der Abwirtskompatibilitit bei strukturellen Anderungen der
Spezifikation (nicht nur Datendnderungen). Wie wird beispielsweise ein alter Parser mit neuen
Datentypen oder Kontrollfeldern umgehen, die er nicht kennt? (Gemini 2.5)

Die unterschiedlichen Effizienzangaben und Optimierungsziele (wie bei MCL, FTL, FPGA)
besser harmonisieren oder klarer abgrenzen. (Gemini 2.5)

Beim Ringpuffer sollte klarer zwischen "keine Speicherung" (im Sinne von Persistenz) und
"Pufferung" (im Sinne von tempordrem Vorhalten) unterschieden werden. (Gemini 2.5)

Ist der Kontext immer ausreichend, um zwischen den beiden Verwendungen des @-Zeichens
sowohl als Trennzeichen innerhalb des IFTL (z.B. AB@C.D) als auch als Operator fiir
synchrone Schreiboperationen (@ gefolgt von einer Ringpufferldnge). zu unterscheiden?
(Gemini 2.5)

Eindeutige Zeichen fiir verschiedene Funktionen, um Doppelbedeutungen zu vermeiden oder
diese expliziter zu machen, z.B. fiir das @-Zeichen: Wenn es als Teil eines IFTL verwendet wird,
sollte es entweder immer von einem Escape-Zeichen gefolgt sein (z.B. \@) oder das IFTL sollte
durch spezielle Begrenzer umschlossen sein, um es von seinem Operator-Kontext zu trennen.
(Gemini 2.5)

Erweiterung des Abschnitts "Wiederherstellung defekter Daten" um explizite Mechanismen zur
Fehlererkennung und -korrektur (nicht nur Erkennung). Redundanz-Kodierungen (z.B. Reed-
Solomon) fiir kritische Metadaten oder Teile des Datenstroms in Betracht ziehen, um eine
automatische Rekonstruktion zu ermoglichen. Definieren, wie ein Parser auf Fehler reagieren
soll (z.B. Logging, Markierung defekter Bereiche, Versuch der partiellen Wiederherstellung).
(Gemini 2.5)

Fiir die Ubertragung in rauen Umgebungen (Weltraum) konnten Forward Error Correction (FEC)
Codes auf Byte- oder Block-Ebene ergidnzt werden, insbesondere fiir den Entropie-Modus.
Optionaler ‘DTIFEC Datentyp oder ControlX Parameter, der angibt, dass nachfolgende Daten
mit einem bestimmten FEC-Code geschiitzt sind. (GPT-40)

Vorwirtsfehlerkorrektur-Codes (FEC) auch in den Ubertragungsprotokoll-Layer integrieren.
(Gemini 2.5)

Fiir die Langzeitarchivierung und Ubertragung in Umgebungen mit hohem Rauschen (z.B.
Weltraumkommunikation) kénnten Fehlerkorrekturcodes (Forward Error Correction, FEC) wie
Reed-Solomon-Codes oder LDPC-Codes in FTLight integriert werden. (Grok 4.1)

Rolle der FPGA-Hardware-Implementierung betonen. Abstraktion, wie Hardware diese "Bit-
Level"-Operationen effizient umsetzt. (Gemini 2.5)

Spezifische FPGA-Hardware-Module zur Dekodierung und Verarbeitung von DTI_UNIT und
DTI TIME. Ergénzung der Spezifikation um Empfehlungen fiir FPGA-Hardware-
Implementierungen dieser DTI, dhnlich der Beschreibung des MCL-Datentyps. (GPT-40)

Definition von einer Low-Level-Hardware-Schnittstellen (z.B. Register, DM A-Kanile) fiir den
effizienten Zugriff auf FTLight-Daten. Ein separates "FTLight Hardware Abstraction Layer
(HAL)" oder "FTLight-on-Chip" Spezifikationsdokument, das die Integration auf Bit- und
Register-Ebene beschreibt. (GPT-40)

Anhang mit definiertem Fehlercode-Katalog zur Verbesserung der Diagnose und Interoperabilitét
bei Parser- und Laufzeitfehlern. (GPT-40)

Explizite Fehlercodes fiir Félle definieren, in denen die Regeln des Protokolls verletzt werden
(z.B. falsche Trennzeichenreihenfolge, ungiiltige DTI-Werte). (Grok 4.1)

Spezifische Fehlertypen und -codes fiir géngige Probleme definieren (z.B. fehlerhafte Struktur,
unbekannte Datentypen, ungiiltige Adressierungen, Priifsummenfehler). (GPT-5.1)

Standardisierte Fehlerantworten definieren, um dem anfragenden System klar mitzuteilen, wenn
eine Anfrage nicht erfiillt werden kann und warum. (GPT-5.1)

Ein spezielles DTIEOS" (End-of-Stream) Element fiir den Stream-Betrieb als ein klar
definierter "End-of-Stream"-Marker, um das Ende eines logischen Datenstroms anzuzeigen, auch
wenn der physische Kanal noch offen ist. (GPT-40)

Konkretere Vorschlidge fiir die ungenutzten Kombinationen im 31-Bit-Feld, wie diese fiir
Features wie Bit-Masken, erweiterte Kompression (Null-Bit/Eins-Bit-Folgen) oder sogar fiir eine
dynamische Typ-Erweiterung genutzt werden konnten. (Gemini 2.5)

Die "offene Aufgabe" fiir die ungenutzten Radix-216-Kombinationen sollte als expliziter
Mechanismus fiir kiinftige, abwértskompatible Erweiterungen genutzt werden. (Perplexity)

Richtlinie, wie neue, spezialisierte Datentypen oder Kompressionsschemata die ungenutzten
Kombinationen verwenden sollen. (Perplexity)

Eine positive und explizite Liste oder ein Algorithmus, welche Symbolkombinationen als DTI-
Identifikatoren reserviert sind und wie diese konkret gebildet werden. (GPT-5.1)

Den genauen Unterschied von DTIFTLightOpen und DTIFTLightWrap erkldren und die
Anwendungsfille klarer abgrenzen. Insbesondere die Implikationen fiir die Kompatibilitdt und
Interoperabilitit bei der Verwendung solcher "offener" oder "eingekapselter" Formate miissen
genauer beleuchtet werden. (GPT-5.1)

Unterschiede DTIFTLightOpen vs. DTIFTLightWrap prézisieren. DTI_FTLightOpen konnte fiir
neue, FTLight-konforme bindre Formate sein, die von Grund auf in der FTLight-Symbolik
entwickelt werden. DTI_FTLightWrap konnte fiir existierende externe Formate sein, die als
binérer Blob in FTLight eingebettet werden (dhnlich Base64, aber mit FTLight-Symbolen) oder
fiir ganze FTLight-Archive. (GPT-5.1)

Die Berechnung der Priifsumme unter Einbeziehung der Zeilennummer, die "Empfénger-seitig
zu bilden ist", ist eine potenzielle Fehlerquelle, wenn Sender und Empfanger unterschiedliche
Algorithmen oder Startwerte flir die Zeilennummerierung verwenden. Eine explizite Definition
des Zeilennummerierungsstarts und -inkrements ist notwendig. (GPT-5.1)

Abgesehen von der Datenintegritit durch Priifsummen gibt es keine spezifischen Mechanismen
zur Fehlererkennung und -behandlung auf Protokollebene (z.B. bei fehlerhaft formatierten Daten,
Endlosrekursionen in Links, etc.). Fiir ein robustes Protokoll wiren solche Uberlegungen
wichtig. (GPT-5.1)

Fiir die implizite Datentyp-Erkennung am Zeilenanfang konnten wenige, fest definierte
Zeichenfolgen als Préfixe fiir Bindrdaten reserviert werden, selbst aulerhalb des synchronen
Schreibens. (GPT-5.1)

Optionale, explizite Deklaration des Datentyps am Zeilenanfang (oder fiir jedes Element)
ermoglichen, zum Beispiel TXT:"Hello", NUM:123, BIN:0xABC. (Perplexity)

Konsistente Regel fiir bindren Inhalt am Zeilenanfang fiir alle Kontexte definieren,
moglicherweise unter Verwendung eines expliziten Bindr-Datentyp-Préfixes. (Perplexity)

Empfehlungen oder formale Spezifikationen fiir Validierungsregeln, die ein Parser oder eine
Anwendung auf eingehende FTLight-Daten anwenden sollte, um die Konformitit
sicherzustellen. (GPT-5.1)

Explizite Hierarchie oder Kontextregeln, wann welche Bedeutung fiir Back-Apostrophs (Array-
Dimensionstrenner, QUERY/EMPTY-Operator, Kennzeichnung negativer Werte/Exponenten in
UNIT/TIME) greift. (Grok 4.1)

Die Regeln fiir das Fiillen mit Nulllbits und das Verwerfen beim Empfang miissen absolut
wasserdicht sein, um die Konsistenz der Daten beim Entropie-Modus zu gewéhrleisten. (Grok
4.1)

Klare Abgrenzung von Implementierungsdetails (z.B. MCL-Algorithmus, FPGA-Optimierung)
von den Kernregeln des Protokolls, die fiir jede Implementierung gelten miissen. (Grok 4.1)

Fiir kritische Datenblocke oder sehr grofle Dateien konnte zusétzlich zur Zeilenpriifsumme eine
Block- oder Datei-Priifsumme implementiert werden. (Grok 4.1)

Separates Zeichen oder eine DTI fiir QUERY/EMPTY einfiihren. (Grok 4.1)

Die "Uberschusskombinationen" im FTL-Datentyp kénnten fiir die Implementierung von
variablen Bit-Langen genutzt werden. (Grok 4.1)

Implementieren von RLE oder dhnlichen einfachen Kompressionsschemata fiir sich
wiederholende Bit-Felder innerhalb des FTL-Datentyps. (Grok 4.1)

Differenzschwelle von 100 im DTI DIF-Datentyp adaptiv gestalten. Das Protokoll konnte
Metadaten fiir einen Datenstrom enthalten, die eine optimale Differenzschwelle oder eine
Anpassungsstrategie definieren. (Grok 4.1)

Fiir verschriankte Messwerte im DTI DIF-Datentyp neben der reinen Bit-Aufteilung auch
Metadaten iiber den verwendeten Verschriankungsalgorithmus (falls es mehrere gibt) hinzufiigen.
(Grok 4.1)

UNIT- und NUM-Datentypen um eine Moglichkeit ergdnzen, um Fehlerbalken oder
Konfidenzintervalle direkt in das Datenformat zu integrieren. (Grok 4.1)

Integration eines Versionierungsschemas fiir die Datenstrukturen selbst (nicht nur fiir die
Protokollversion). (Grok 4.1)

Erweiterung der Query-Syntax, um komplexere Abfragen zu unterstiitzen, z.B. Bereichsabfragen
fiir numerische Werte, logische Operatoren (AND, OR), Wildcards in Textfeldern. (Grok 4.1)

Parameter fiir Paginierung (Offset, Limit) und erweiterte Streaming-Kontrolle (Start/Stopp-
Parameter innerhalb eines Datenstroms) hinzufiigen. (Grok 4.1)

Abstrakte Hardware-Schnittstelle (z.B. fiir Bitstrom-Verarbeitung, Puffer-Management)
spezifizierten. (GPT-5.1)

Spezifikation der Hardware-Schnittstellen (FPGA-basiert) und der Logik auf Bit-Ebene noch
detaillierter und formaler entwickeln. Dies schlieft Timing-Diagramme, Registerbeschreibungen
und Zustandstabellen ein. (Grok 4.1)

Definieren einer abstrakten Schnittstelle oder eines "Hardware-API", das beschreibt, welche
Operationen eine spezialisierte Hardware (FPGA, ASIC) implementieren muss, um FTLight
optimal zu unterstiitzen, z.B. Funktionen fiir Bindrkodierung/Dekodierung,

Priifsummenberechnung, Adressierung im Entropie-Modus und Datenstrom-Manipulation.
(Gemini 2.5)

Aspekte der Parallelisierung von Datenstromen und der Nebenldufigkeit von
Verarbeitungsaufgaben explizit beriicksichtigen, insbesondere wenn es um die Nutzung von
FPGAs oder Multi-Core-Prozessoren geht. (Grok 4.1)

Ergénzung der Spezifikation mit einer viel grofleren und vielfdltigeren Sammlung von Beispielen
fiir alle Datentypen, Strukturierungen und Operationsmodi, einschlielich Fehlerféllen. (Grok
4.1)

Umfassendes Glossar aller verwendeten Begriffe und Akronyme erstellen. (Grok 4.1)

Fiir die Spezifikation einen klaren Versionierungsplan fiir das Dokument selbst etablieren. (Grok
4.1)

Wenn diese "offenen Aufgaben" fiir ungenutzte Kombinationen im Radix-216-Schema spéter
implementiert werden, muss sorgfaltig darauf geachtet werden, dass die neuen Funktionen nicht
mit den bestehenden NUM-Regeln kollidieren oder zu unerwartetem Verhalten fiihren.

(Perplexity)

Die Handhabung negativer Zeitstempel (insbesondere die Definition des "Referenzpunktes" und
die Interaktion mit "DTITIME" und seinen Faktoren) sollte explizit und detailliert sein.
(Perplexity)

Die Implementierung der Eindeutigkeit des IFTL-Identifikators (wie man Kollisionen in einem
verteilten System verhindert) konnte in der Praxis extrem schwierig oder unmoglich sein.
(Perplexity)

Prizisere Abgrenzung von dhnlichen Konzepten, wie zum Beispiel MCL und FTL, die beide als
"hochste Rate/Effizienz* beschrieben werden. (Perplexity)

Explizite Escape-Sequenzen fiir Kommas, Semikolons, Doppelpunkte und Gleichheitszeichen
innerhalb von Pfad- oder Informationselementen einfiihren. (Perplexity)

Bei Einfiihrung von strikteren Parsing-Regeln fiir Trennzeichen sollte dies als eine neue Version
der Spezifikation gekennzeichnet werden. (Perplexity)

Leere Pfadkomponenten explizit in der Grammatik definieren. (Perplexity)
Realistische praktische Obergrenzen fiir typische Implementierungen (Hardware- und Software-
Limits, Speicherkapazitit) diskutieren. (Perplexity)

Fiir echte Streaming-Anwendungen (insbesondere bei grolen Datenmengen) sind Mechanismen
fiir die Flusskontrolle, Checkpoints und die Wiederherstellung bei Verbindungsabbriichen von
entscheidender Bedeutung. (Perplexity)

Klarere Syntax und Semantik fiir die Kennzeichnung negativer Exponenten, ggf. durch ein
explizites Vorzeichen oder einen eigenen DTI-Typ. (Perplexity)

Ein umfassendes Glossar der spezifischen Begriffe (z.B. "Informationsmenge", "Parent-

nn

Information", "synchrone Schreiboperation®) ergénzen. (Perplexity)

Detailliertere Spezifikation des Interfaces fiir FPGA-Implementierungen (z.B. Bus-Protokolle,
Datenbreiten, Taktfrequenzen). (Perplexity)

Spezifische Benchmark-Szenarien und Testfélle bereitstellen. (Perplexity)

Explizit beschreiben, wie Parsing-Fehler, Priifsummenfehler oder andere
Datenintegritidtsprobleme auf der Hardware-Ebene gehandhabt und an die Software gemeldet
werden. (Perplexity)

Die Syntax fiir das Abonnieren von Daten mit Periodizitit und Startzeitpunkt (z.B.
EKD@...Frequenz,, ,0,1373217800) préziser und intuitiver gestalten. (Perplexity)

Definieren was passiert, wenn ein abonniertes Datenelement nicht verfiigbar ist oder sich die
Struktur dndert. (Perplexity)

B - FTLightApp aus FTLight-Modulen konfiguriert

Formale Sprache (dhnlich XML Schema oder JSON Schema) zur Definition von FTLight-
Datenstrukturen entwickeln. (Grok 4.1)

Definition eines standardisierten Fehler- und Warnmeldungsformats innerhalb des FTLight-
Protokolls (DTIERROR/DTIWARNING). Dies konnte Statuscodes, Beschreibungen und optional
referenzierende Datenpfade enthalten, um Probleme prizise zu lokalisieren. (DeepSeek R1)

Standardisiertes FTLight-Format fiir Fehlerberichte definieren, das detaillierte Informationen
iiber erkannte Fehler (Typ, Position, Kontext) enthilt. (Grok 4.1)

Prizisieren, unter welchen Umstinden MCL (Rate) gegeniiber FTL (Effizienz) bevorzugt werden
sollte und Angabe von klaren Metriken (z.B. "Kodierungsrate in Bytes/Sekunde" vs.
"Speichereffizienz in Bit/Byte®). (Gemini 2.5)

"Auto-Modus", bei dem das System basierend auf Hardware (ARM/Intel), Datenvolumen und
Latenzanforderungen automatisch den besten Kodierungstyp (FTL/MCL) wéhlt. (Gemini 2.5)

Kurzes Anwendungsbeispiel oder ein Mock-up fiir die "FTLightApp" zeigen, wie ein Benutzer
mit dieser App FTLight-Daten manipuliert, um die Praktikabilitét der Spezifikation zu
verdeutlichen. (Gemini 2.5)

Ergénzen der Spezifikation mit erwarteten oder angestrebten Performance-Metriken (z.B. Latenz,
Durchsatz) fiir die FPGA-Implementierung der verschiedenen Datentypen und des Entropie-
Modus. (GPT-5.1)

Mechanismen hinzufiigen, um Datenstromen Prioritdten zuzuweisen oder Quality of Service
(QoS)-Parameter zu definieren. (Grok 4.1)

Einheitliche und effiziente Mechanismen zur Lédngenangabe fiir variable Datenfelder (Text,
Binér) definieren, z.B. VLQs (Variable-Length Quantity) oder andere effiziente Langen-
Kodierungen, um die tatsdchliche Grof3e des folgenden Datenblocks anzugeben. (Gemini 2.5)

C - Apps als ausfithrbare Dateien (Executables) erstellt

Dezentraler oder foderierter Registrierungsmechanismus (dhnlich wie Domain Name Systems
oder UUIDs) fiir IFTL-Prafixe. (Perplexity)

Ergénzung der IFTL-Definition um die Option, Universally Unique Identifiers (UUIDs) oder
Globally Unique Identifiers (GUIDs) als Primér-Identifikatoren zu verwenden. (DeepSeek R1)

Mechanismus etablieren, um die "hochspezifischen Datenformate" zu registrieren (z.B. auf
wegalink.eu oder einer zentralen Stelle). Eine eindeutige URL oder ein Registrierungsschliissel
im ControlX-Feld wiirde die Interoperabilitit sicherstellen. (GPT-5.1)

Interoperabilitit mit bestehenden Standards wie FITS oder HDF5 (Claude 4.5)

Empfehlung fiir die Verwendung von international akzeptierten Abkiirzungen, ISO-Standards fiir
Einheiten (bereits vorhanden im UNIT-Datentyp). (DeepSeek R1)

Referenz zu einer offiziellen oder de facto Standard-Einheiten-Registrierung (z.B. UDUNITS,
QUDT) zur weiteren Erhdhung der Robustheit und der Konsistenz iiber verschiedene
Anwendungen hinweg. (GPT-5.1)

Ergénzen von Metadaten, die angeben, mit welchem "Vertrauens-Level" bestimmte Daten
gespeichert wurden (z.B. "Rohdaten", "validiert", , korrigiert"). (Grok 4.1)

Integration von geoditischen Koordinaten (Lénge, Breite, Hohe) mit Bezugssystemen (WGS84,
ITREF, etc.) in den IFTL- oder UNIT-Datentyp. (Grok 4.1)

Standardisierte Zeitskalen (z.B. TAI, GPS, UTC mit Leap Seconds) explizit beriicksichtigten, um
die Langzeitarchivierung zu erleichtern. (Gemini 2.5)

TAIL TT, TDB, GPS-Zeit mit einer erweiterten TIME-Spezifikation explizit unterstiitzen. (Grok
4.1)

Erweiterung des Zeitmanagements mit standardisierten Methoden fiir die Synchronisation iiber
unsichere Kanile (wie bei Radioastronomie oft der Fall) und fiir die Darstellung von
Zeitbereichen (Intervalle, Perioden). (Gemini 2.5)

Kldren, wie FTLight mit Zeitspriingen, ungenauen Uhren oder externen
Zeitsynchronisationsprotokollen (NTP, PTP) umgeht. Préazisieren wie die Differenz angewendet
wird, um Daten kohédrent zu interpretieren. (GPT-5.1)

Generische Metadatenstruktur, die fiir alle Datentypen verwendet werden kann, um zusétzliche
Informationen (z.B. Beschreibungen, Einheiten, Skalierungsfaktoren, Zeitbeziige) konsistent
anzuhingen, z.B. ein "DTIMETA" Datentyp, der eine Liste von Schliissel-Wert-Paaren enthilt.
Dies wiirde die "Framework-Funktionalitidt" und "Optionale Werte" systematisieren. (Gemini
2.5)

Eine stirkere Formalisierung von Framework-Daten, z.B. durch die Definition von Standard-
Schliissel-Wert-Paaren fiir gidngige astronomische Metadaten (z.B. Observatoriums-ID,
Instrumenten-ID, Beobachtungstyp, Himmelskoordinaten, etc.), zur Verbesserung der
Interoperabilitét. (GPT-40)

Eine zusitzliche Spezifikation oder ein Katalog von empfohlenen Framework-Metadaten-
Schemata fiir astronomische Daten zur Erleichterung der Integration mit bestehenden
astronomischen Metadaten-Standards. (GPT-40)

Einflihrung von optionalen "Schema-Transformationsregeln" als Framework-Daten, die
beschreiben, wie alte Datenstrukturen in neue iiberfithrt werden konnen, oder wie alte Schemata

zu interpretieren sind. Diese konnten in speziellen Framework-Dateien gespeichert und vom
DTI_FTLightWrap referenziert werden. (GPT-40)

Es sollte betont werden, wie ein System reagiert, wenn die Framework-Empfehlungen nicht
eingehalten werden (z.B. Warnungen, Fehlermeldungen in Logs, etc.). (Gemini 2.5)

Einflihrung eines formalisierten Metadaten- und Schemadefinitionsmechanismus innerhalb von
FTLight. (Claude 4.5)

Empfehlung fiir die Option, den "Thema"-Teil des IFTL durch maschinenlesbare Kennungen aus
einer zentralen Ontologie zu referenzieren, anstatt durch Freitext. (DeepSeek R1)

Definition eines speziellen, optionalen Metadaten-Layers, der die semantische Bedeutung von
Datenelementen in einem maschinenlesbaren Format beschreibt (z.B. Ontologien, Schemata,
Data Dictionaries). Dies konnte als ein "System of Records" fiir FTLight-Strukturen dienen. Ein
DTIONTOLOGY oder DTISCHEMA-Datentyp konnte hierfiir eingefiihrt werden. (DeepSeek
R1)

Standardisierte Ontologie flir Metadaten (z.B. "Antenne", "Azimut", "Frequenz") einfiihren.
(Perplexity)

Mapping von FTLight-Metadaten auf Semantic Web Ontologien (RDF, OWL) als eine Briicke zu
bestehenden Wissensrepréisentationsstandards. (GPT-5.1)

Integration von Links zu externen Ontologien (z.B. IVOA VO-DML fiir Astro-Daten) oder eine
Light-Weight-Ontologie-Sprache innerhalb von FTLight, um die Bedeutung der Datenfelder
formal zu beschreiben. (Grok 4.1)

Erweiterung des FTLightOpen-DTI, um einen obligatorischen Link (z.B. URL oder IFTL-
Adresse) zum entsprechenden Schema. (Grok 4.1)

Explizite Angabe des Inhalts von einem Textfeld (z.B. freier Text, URI, JSON-String) fiir eine
robuste Verarbeitung. Optionaler DTI_TXL ControlX Parameter zur Angabe des Textformats/
Inhalts, z.B. DTI_TXLURL, DTITXLJSON. (GPT-40)

Optionale Einriickungs- oder Zeilenumbruchregeln fiir komplexe hierarchische Strukturen
definieren, die beim Parsen ignoriert werden. (Perplexity)

Fallstudien ergénzen, um komplexere, realitdtsnahe Szenarien, die die volle Leistungsfahigkeit
der FTLight-Spezifikation demonstrieren, insbesondere im Umgang mit "unbegrenzter Grofle"
und Langzeitarchivierung iiber Jahrzehnte hinweg. Aufzeigen, wie FTLight mit den aufgezeigten
Problemen (z.B. Inkompatibilitit durch Langenbeschrankungen) umgeht. (GPT-5.1)

Eine umfassende, gut dokumentierte API (fiir verschiedene Programmiersprachen) und eine
hochwertige Referenzimplementierung (Open Source) wiren entscheidend fiir die Akzeptanz.
Aktive Forderung einer Community-Entwicklung um eine Referenzbibliothek und Tools (Parser,
Serialisierer, Viewer, Editoren) auf Basis der Open-Source-Spezifikation. (GPT-40)

	FTLight File/Stream Datenstruktur und Datenaustausch
	Version
	Anwendung
	Versionsverlauf
	Einladung zur breiteren Mitarbeit und Erklärung zur Lizenz
	Kontakt

	Lizenz
	Mitarbeit
	Inhaltsverzeichnis
	Summary
	Überblick
	Review der FTLight-Spezifikation durch KI-Systeme
	Zielstellung
	Einführung
	Fallstudien
	A – Datenreihe
	B – Datensatz mit Zeitstempel
	C – Strukturierte Information
	Bildung von strukturierten Informationen

	Abbildung strukturierter Informationen in einem File/Stream
	Entwurfsziele
	File/Stream-Struktur
	Zeilen innerhalb eines Files/Streams
	Informationselemente innerhalb einer Zeile
	Statusabhängige Steuerzeichen
	Duplizierte Informationselemente in aufeinanderfolgenden Zeilen
	Vergrößerung einer Informationsmenge durch eine Folgezeile
	Verwalten eines aktuellen Pfades
	Verwalten einer übergeordneten (Parent-)Informationsmenge
	Synchrone Schreiboperationen
	Füllen von Tabellenspalten mit formatierten Arrays
	Volatiles Synchronschreiben
	Wiederaufsetzen beim Synchronschreiben
	Datentypen am Zeilenanfang
	Tabellen-Import

	Vergleich von FTLight-Strukturen mit Verzeichnissen, Registraturen und Datenbanken
	Verzeichnisse in Dateisystemen
	Registraturen
	Datenbanken

	Datentypen
	Sonderzeichen
	Textdatentyp
	Datentyp für Zahlendarstellung
	Arrays von Zahlen und Text
	Binärer Datentyp (FTL)
	Zahlendarstellung im Binärformat (NUM)
	Repräsentieren von Datentypen im Binärformat (DTI_...)
	Datentyp-Identifikator (DTI)
	DTI_FTLightOpen-Datentyp
	DTI_FTLightWrap-Datentyp
	DTI_MCL-Datentyp
	DTI_FTL-Datentyp
	DTI_TXL-Datentyp
	DTI_DIF-Datentyp
	DTI_UNIT-Datentyp
	DTI_TIME-Datentyp
	DTI_TOKEN-Datentyp
	DTI_LINK-Datentyp
	Der FTL-Identifikator-Datentyp (IFTL)

	Adressdatentyp
	Adressdarstellung
	Umgang mit Änderungen

	Entropie-Modus (FPGA)
	Framework- Funktionalität
	Optionale Werte
	Kommentare
	Standardvorgaben
	Mehrfachspezifikationen
	Interpretation

	Datenintegrität
	Prüfsummenberechnung
	Wiederherstellung defekter Daten

	FTLight-Archiv
	Versionsverfolgung für Informationselemente
	Version der FTLight-Spezifikation
	Zeitsynchronisation
	Anfrage/Antwort-Verfahren für gespeicherte Daten
	Anfragestruktur
	Allgemeine Anfrageelemente
	Anforderung von Identifikatoren
	Zeiteinschränkungen
	Arrayabfragen

	Anfragen, Abonnieren und Schreiben von aktuellen Daten
	Datenelement spezifizieren

	Laufzeitinformationen
	Algorithmen

	Benchmarking
	Appendix A
	A.1 Beispiel für das Speichern von mehrstufigen Metadaten vor einem Interferometrie-Datenblock
	A.2 Beispiel für einen Mehrkanalempfänger mit wahlfreier Kanalselektion
	A.3 Beispiel für einen Mehrkanalempfänger mit regelmäßiger Kanalselektion

	Entwicklungsverlauf
	KI-Vorschläge zu Modifikationen und Erweiterungen zur Verbesserung der Anwendbarkeit
	A - FTLight File/Stream-Datenprotokoll
	B - FTLightApp aus FTLight-Modulen konfiguriert
	C - Apps als ausführbare Dateien (Executables) erstellt

