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Einladung zur breiteren Mitarbeit und Erklärung zur Lizenz 
Eine Analyse und Beurteilung der FTLight-Spezifikation durch 7 KI-Systeme hat zu der 
Einschätzung geführt, dass deren Designprinzipien auch in anderen Bereichen außerhalb des 
bisherigen vorrangigen Anwendungsgebietes in der Radioastronomie interessant und nützlich sein 
könnten. Deshalb wurde die weitere Mitarbeit an der FTLight-Spezifikation sowie an der FTLight-
Referenzimplementierung und den auf dieser Basis entstehenden FTLightApp-Anwendungen für 
eine breitere Mitarbeit geöffnet. 

Interessenten sind eingeladen, sich den aktuellen Entwicklungsstand vom GitHub-Repository 
(https://github.com/WegaLink/FTLightApp) zu holen und darauf aufbauend Modifikationen, 
Erweiterungen, Tests und Designstudien durchzuführen und diese wiederum mit anderen 
Interessenten oder öffentlich zu teilen, wenn sie dies möchten. 

Die Lizenz der FTLight-Spezifikation und der primären FTLight-Referenzimplementierung wurde 
absichtlich als „Unlicensed“ gewählt, um einer freizügigen Nachnutzung bis hin zur kommerziellen 
Nutzung breiten Raum ohne jegliche Beschränkungen zu lassen. 

Sollte der aktuelle Stand einer individuellen Weiterentwicklung oder der Weiterentwicklung durch 
ein Team von der vorliegenden FTLight-Spezifikation, von einer FTLight-Referenzentwicklung 
oder darauf aufbauender FTLightApp Anwendungen ebenfalls öffentlich mit einer OpenSource-
Lizenz geteilt werden so wird hiermit angeboten, dass ein Link dazu in die primäre FTLight-
Spezifikation aufgenommen werden kann, wodurch weitere Interessenten auf diese Arbeiten 
aufmerksam gemacht werden können. 
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	 Eckhard   Email: ekd@ftlightapp.eu   Tel.: +49 3834 4123382 
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Dies ist FREIE Software  

Hiermit wird eine gebührenfreie Erlaubnis für alle Personen erteilt, welche eine 
Kopie dieser Software einschließlich zugehöriger Dokumentation  (der „Software“)  
erhalten, mit der Software ohne Einschränkungen zu verfahren, einschließlich des  
Rechts zur Nutzung, zum Kopieren, Modifizieren, Zusammenführen, Veröffentlichen,  
Vertreiben, weiter Lizenzieren, und/oder dem Verkauf von  Kopien  der  Software, 
und Personen, welche die Software hierdurch erhalten zu gestatten,  dies  ebenso 
zu tun, unter Vorbehalt der folgenden Bedingungen:  

Für die Nutzung der Software werden keinerlei Bedingungen auferlegt.  

DIE SOFTWARE WIRD GELIEFERT „WIE SIE IST“, OHNE  IRGENDEINE  GARANTIE,  EXPLIZIT 
ODER IMPLIZIT, EINSCHLIESSLICH JEDOCH NICHT BEGRENZT AUF DIE NICHTGEWÄHRLEISTUNG 
EINER EIGNUNG ZUM VERKAUF ODER  EINER  EIGNUNG  UND  VERTRÄGLICHKEIT  FÜR  EINEN 
BESTIMMTEN ZWECK. IN KEINEM FALL DARF DER AUTOR ODER EINER DER COPYRIGHT-INHABER 
VERANTWORTLICH GEMACHT WERDEN FÜR ANSPRÜCHE BELIEBIGER  ART, FÜR  BESCHÄDIGUNGEN 
ODER ANDERE SCHULDZUWEISUNGEN, EGAL OB SIE DURCH EINEN  VERTRAG  ODER  SCHADENS-
ERSATZANSPRUCH ENTSTEHEN, WELCHE IM ZUSAMMENHANG MIT DER SOFTWARE, DEREN NUTZUNG 
ODER ANDERER KOMMERZIELLER HANDLUNGEN MIT DER SOFTWARE STEHEN.  

This is FREE software   

Permission is hereby granted, free of charge,  to any person obtaining  a copy 
of this software and associated documentation files (the "Software"),  to deal 
in the Software without restriction, including without limitation  the  rights 
to use,  copy,  modify,  merge,  publish,  distribute, sublicense, and/or sell 
copies  of  the  Software,   and  to  permit  persons  to  whom  the  Software 
is furnished to do so, subject to the following conditions:  

There are no conditions imposed on the use of this software.  

THE SOFTWARE IS PROVIDED "AS IS",  WITHOUT  WARRANTY  OF ANY KIND,  EXPRESS OR 
IMPLIED,  INCLUDING  BUT  NOT  LIMITED  TO  THE  WARRANTIES OF MERCHANTABILITY, 
FITNESS  FOR  A  PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
AUTHORS  OR  COPYRIGHT  HOLDERS  BE  LIABLE  FOR  ANY CLAIM,  DAMAGES OR OTHER 
LIABILITY,  WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,  ARISING FROM, 
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN  THE 
SOFTWARE. 

Mitarbeit 
Dank gilt allen ERAC Mitgliedern, die mit Hinweisen und Vorschlägen an der Entstehung der 
FTLight-Spezifikation (ehemals 'DataX') mitgewirkt haben. 

mailto:software@wegalink.eu
https://eracnet.org/workshop/allbin.htm
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Summary 
The FTLight specification defines a representation of hierarchical data structures. There are no 
conceptual (by design) limitations with regard to the size and depths of data structures as well as 
regarding the size of their data elements. Limitations result but from implementation on hardware. 

The FTLight specification aims at a high entropy (low redundancy) for representing data elements 
as well as hierarchical data structures. There are data format specifications with specific format 
features for application programs (apps) and for the data transfer and data storage: 

MCL	 - highest encoding rate exceeding 1 Gbyte/s, in particular on ARM architectures, e.g. on M2 
FTL	 - default format, highest encoding efficiency, typically 97% of a binary data representation 
TXL	 - arbitrary text representation involving all byte values 0..255 
NUM	 - extensive number representation in science, engineering, economy and other areas 
DIF	 - fast data compression for data series with a low variance 
FPGA	 - hardware transfer at almost 100% of available bandwidth 
UNIT	 - comprehensive representation of all basic as well as derived units of the SI standard 
TIME	 - representation of time scales on many levels from micro cosmos to macro cosmos 
The FTLight specification has been developed for the special requirements in the science of radio 
astronomy and SETI (Search for Extra Terrestrial Intelligence) also with the vision to be a template 
for a possible future communication with other civilizations (our possible cosmic neighbors). 

Überblick 
Die FTLight-Spezifikation definiert eine Repräsentation von hierarchischen Datenstrukturen. Es 
gibt keinerlei konzeptionelle Beschränkungen (durch das Design) bezüglich der Größe und Tiefe 
der Datenstrukturen als auch nicht bezüglich der Größe der dargestellten Datenelemente. 
Begrenzungen ergeben sich jedoch bei der Umsetzung auf Hardware. 

Die FTLight-Spezifikation strebt eine hohe Entropie (geringe Redundanz) für die Darstellung von 
Datenelementen als auch für hierarchische Datenstrukturen an. Sie enthält Spezifikationen von 
Datenformaten mit spezifischen Eigenschaften für Anwendungsprogramme (Apps) und für die 
Übertragung und Speicherung von Daten: 

MCL	 - höchste Rate für das Kodieren von Daten mit über 1 GByte/s, insbesondere auf  
	   ARM-Architekturen wie zum Beispiel M2 
FTL	 - Standardformat, höchste Effizienz der Kodierung von typisch 97% im Vergleich zur  
	   binären Kodierung  
TXL	 - unbeschränkte Präsentation von Texten mit allen Byte-Werte 0..255  
NUM	 - umfassende Repräsentation von numerischen Daten in Wissenschaft, Technik, Wirtschaft  
	   und in anderen Bereichen 
DIF	 - schnelle Kompression von Datenreihen mit geringer Varianz 
FPGA	 - Datenübertragung mit Hardware bis annähernd 100% der verfügbaren Bandbreite 
UNIT	 - umfassende Repräsentation von allen grundlegenden und abgeleiteten SI-Einheiten 
TIME	 - Darstellung von Zeitskalen auf vielen Ebenen von Mikro- bis Makrokosmos 
Die FTLight-Spezifikation entstand aus den speziellen Anforderungen im Bereich Radioastronomie 
und SETI (Search for ExtraTerrestrial Intelligence) auch mit der Vision, als Vorlage für eine 
mögliche zukünftige Kommunikation mit anderen Zivilisation (möglichen kosmischen Nachbarn) 
dienen zu können. 



Review der FTLight-Spezifikation durch KI-Systeme 
Die FTLight-Spezifikation mit dem Stand von 2025-04-05 wurde von 7 KI-Systemen auf logische 
Konsistenz überprüft und es wurde weiterhin um Vorschläge für Modifikationen und Erweiterungen 
zur weiteren Verbesserung der Anwendbarkeit gebeten: 
• Claude 4.5 Reasoning  

„Die FTLight-Spezifikation ist ein ambitioniertes und detailliertes Datenprotokoll, das darauf 
abzielt, die Einschränkungen traditioneller Datenformate zu überwinden, insbesondere im 
Kontext großer, hierarchisch organisierter astronomischer Datenmengen. Die Spezifikation zeigt 
eine hohe Detailtiefe, die bis auf Bit-Ebene geht, was für die Implementierung auf Hardware 
(z.B. FPGAs) entscheidend ist. Insgesamt ist die FTLight-Spezifikation ein vielversprechender 
Ansatz, um die Herausforderungen der modernen Datenverarbeitung zu meistern. Die detaillierte 
Ausarbeitung und der Fokus auf Effizienz und Hardwarenähe sind klare Stärken.“ 

• DeepSeek R1 
„Das FTLight-Protokoll ist ein beeindruckendes, umfassendes und in sich stimmiges Konzept. 
Die Details zu Bits, Bytes und Zeichenkodierungen sind präzise, und die übergeordneten 
Architekturprinzipien (Hierarchie, Effizienz, Langzeitarchivierung) sind durchweg erkennbar. 
Die logische Struktur ist solide.“ 

• Gemini 2.5 Thinking 
„ Die FTLight Spezifikation ist ein sehr durchdachtes und umfassendes Dokument, das die 
Herausforderungen der Datenhaltung in komplexen und hochleistungsfähigen Umgebungen 
adressiert. Die detaillierte Beschreibung bis auf Bit-Ebene ist beeindruckend und essenziell für 
die angestrebte Effizienz und Hardware-Implementierung. 
Die Vision, dass Hardware an das Protokoll angepasst wird, anstatt umgekehrt, ist mutig und 
notwendig, um die Grenzen traditioneller Ansätze zu überwinden. FTLight könnte tatsächlich 
eine Blaupause für einen zukünftigen Standard sein.“ 

• GPT-4o 
„ Die FTLight Spezifikation ist sehr ambitioniert und versucht, die Grenzen traditioneller 
Datenprotokolle zu überwinden, insbesondere in Bezug auf Hierarchie, Skalierbarkeit und 
Effizienz. Die Idee, Datenformate zu entwickeln, die nicht hardwareoptimiert sind, sondern 
Hardware erfordern, die sie optimal unterstützt, ist innovativ und zukunftsweisend. Die 
Detailtiefe bis auf Bit-Ebene ist beeindruckend und zeugt von einem tiefen Verständnis der 
Materie.“ 

• GPT-5.1 Thinking 
„Die FTLight Spezifikation ist ein ambitioniertes und detailliertes Dokument, das versucht, die 
Einschränkungen traditioneller Datenprotokolle zu überwinden. Die ehrgeizige Zielsetzung 
(unbegrenzte Größe, hocheffiziente binäre Darstellung, Langzeitarchivierung hierarchischer 
Daten, insbesondere für die Radioastronomie) bildet eine starke Grundlage für das Design. “ 

• Grok 4.1 Reasoning 
„Die FTLight-Spezifikation ist ein bemerkenswert detailliertes und durchdachtes Dokument. Die 
grundlegenden Designprinzipien sind logisch konsistent und adressieren die angeführten 
Probleme traditioneller Datenprotokolle wirkungsvoll. Die Stärken liegen in der konsequenten 
Verfolgung von Hierarchie ohne Beschränkung, hoher Effizienz durch spezielle Binärformate 
und der Unterstützung von Langzeitarchivierung und Versionsverwaltung.“ 

• Perplexity Reasoning 
„ Die FTLight-Spezifikation legt ein solides Fundament für ein leistungsfähiges und flexibles 
Datenprotokoll. Die Stärke liegt in ihrem ganzheitlichen Ansatz und dem Fokus auf Effizienz 
und Langzeitstabilität. “ 

https://ftlightapp.eu/pdf/ai_review/Claude_4.5.pdf
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Zielstellung 
Die FTLight File/Stream-Datenstruktur wurde mit dem Ziel entworfen, die Sammlung und den 
Austausch großer Datenmengen zu unterstützen sowie den Zugriff auf einzelne Bestandteile bis 
hinunter zu den kleinsten Detailinformationen zu ermöglichen. 

Ein spezieller Bedarf für den Umgang mit großen Datenvolumen besteht insbesondere im Bereich 
Radioastronomie, zum Beispiel wenn die Datenströme von verteilten Antennenstandorten 
zusammengeführt werden sollen, um alle Anlagen zu einem integrierten Antennenkomplex zu 
verbinden, so wie dies für das Generieren von Himmelsansichten mit Interferometer-Netzwerken 
der Fall ist. 

Obwohl diese Spezifikation auf die besonderen Anforderungen von Interferometer-Netzwerken 
ausgelegt ist, so ist sie darüber hinaus auch für andere Zusammenschaltungen von Computern 
anwendbar, um diese in integrierter Weise zusammenarbeiten zu lassen. 

Die FTLight Software steht als OpenSource-Spezifikation für die Anwendung in Projekten zur 
Verfügung, ähnlich zu Protokollfestlegungen wie HTML, XML oder GigE Vision: 

HTML		 - Content-Darstellung in Internet-Browsern 

XML	 	 - Speichern von Dokumenten und für Informationen in anderen Anwendungen 

GigE Vision	 - Streamen von Bildern und Steuerfunktionen bei Digitalkameras 

Einführung 
In der gegenwärtigen Computermethodologie ist das Schichtenmodell weit verbreitet, um 
Computersysteme miteinander zu verbinden. Schichtenmodell bedeutet das Umhüllen von zu 
transportierenden Informationspaketen mit Zusatzinformationen, zum Beispiel wo die Information 
herkommt, wo sie hingeht, welchen Kategorien sie angehört und anderen. Das so entstehende 
Datenpaket ist möglicherweise in ein übergeordnetes Datenpaket eingebettet, welches den gleichen 
Zweck verfolgt, lediglich auf einer höheren Ebene. Das entstehende Datenpaket kann wiederum von 
einem nächsten Datenpaket umhüllt sein, und so weiter. 

In der Regel werden notwendige Steuerinformationen im Vorspann (Header) eines Datenpaketes 
abgelegt, während die zu transportierende Information im Hauptteil des Datenpaketes (body) 
eingefügt wird. Weiterhin können in einem Nachsatz (Trailer) weitere Informationen enthalten sein, 
welche zum Beispiel zur Sicherstellung der Datenintegrität von Bedeutung sind. Die Struktur des 
endgültigen Datenpaketes, welches effektiv über den Verbindungskanal übertragen wird, kann somit 
sehr komplex werden und der Overhead kann dementsprechend groß sein: 

Vorspann1 Vorspann2 ... Vorspann N (effektive Information) Nachsatz N ... Nachsatz2 Nachsatz1 

Ein Vorteil des Schichtenmodells ist offensichtlich, dass die einzelnen Schichten unabhängig 
voneinander sind und dass sie separat implementiert werden können. Weiterhin können geeignete 
Kombinationen von Transportschichten benutzt werden, um Informationen zwischen beliebigen 
heterogenen Systemen auszutauschen. 

Andererseits erhöht jede Transportschicht den Umfang der zu übertragenden Information und die 
Forderung nach unabhängigen Schichten macht es nahezu unmöglich, Transportoptimierungen über 
mehrere Schichten hinweg durchzuführen. In einem extremen Fall ergab die Analyse eines 
Datenstromes, welcher Tabellen-artige Daten mit mehreren tausend Einträgen transportierte, dass 
der resultierende Overhead bei Anwendung des SOAP-Protokolls 95% betrug und nur 5% 
Nutzdaten im Vergleich zur binären Repräsentation der gleichen Daten übertragen wurden. 



Es sei erwähnt, dass sich das SOAP-Protokoll sehr gut für die Übertragung beliebig strukturierter 
Daten eignet, was bei anderen Protokollen oft nicht der Fall ist. Unter existierenden Protokollen 
musste daher in der Regel für einen konkreten Einsatzfall nach einem Kompromiss zwischen 
Effektivität der Übertragung und Möglichkeiten strukturierter Datenrepräsentation gesucht werden. 

Die FTLight-Spezifikation verfolgt das Ziel, das Beste aus beiden Welten miteinander zu verbinden, 
also zum einen bei der Speicherung und Übertragung hoch effektiv zu sein und andererseits beliebig 
strukturierte Daten abbilden zu können. Hinzu kommen weitere Eigenschaften im Zusammenhang 
mit der Notwendigkeit des Umgangs mit beliebig großen Datenvolumen. 

Ein weiteres Ziel besteht in der Unabhängigkeit von jeglichen Transportschichten, welche den 
Informationsfluss zwischen Computern steuern. Für einen erfolgreichen Datenaustausch sollte es 
genügen, eine Verbindung auf der Basis von IP-Services zu haben, welche das Spezifizieren des 
Empfängers der Information ermöglichen. Alternativ ist es möglich, auch jede andere Kopplung, 
wie zum Beispiel serielle Verbindungen für einen FTLight-basierten Informationsaustausch zu 
verwenden. Die Implementierung dieser Zielstellung wird eine breite Anwendung in heterogenen 
Umgebungen ermöglichen und gleichzeitig stellt dies eine gute Basis für sorgfältige und 
tiefgehende Transportoptimierungen dar. 

Spezielle Aufmerksamkeit muss der Gesamtsignallaufzeit gewidmet werden die entsteht, wenn ein 
System ein Datenpaket an ein zweites System sendet und wenn dieses eine Antwort an das erste 
System zurücksendet. Je mehr Signalläufe für das reguläre Übertragen von kurzen Informationen 
erforderlich sind, desto mehr Bedeutung kommt dieser Frage zu. Im Falle von extremen 
Signallaufzeiten, wie sie zum Beispiel bei der Kommunikation von Weltraumsonden mit 
Bodenstationen auftreten, steht maximal ein kompletter Signallauf für das Übertragen von 
Informationen zur Verfügung. Alle Datenprotokolle, welche mehrere Signalläufe benötigen, sind in 
diesem Fall nutzlos und scheiden für die Anwendung aus.  

Kurz zusammen gefasst, besteht das Ziel dieser Spezifikation in einer eindeutigen selbsterklärenden 
hierarchischen Datenstruktur, welche mit höchster Effektivität zwischen einem Sender und einem 
Empfänger übertragen werden kann. 

Fallstudien 

A – Datenreihe 
Eine der einfachsten Datenstrukturen wird durch eine einzelne Messwertspalte dargestellt: 
2602 
2595 
2594 
.. 

Der wesentliche Nachteil einer einzelnen Messwertspalte ist das Fehlen jeglicher Informationen 
über Herkunft und Bedeutung der Daten sowie die fehlende Maßeinheit für die Zahlen. 

B – Datensatz mit Zeitstempel 
Ein Vorspann (Header) sowie Zeitstempel liefern bereits mehr Informationen über die Messwerte: 
Zeit                          Flux        Temperatur 
[Sekunden seit 1.1.1970]      [Jy]        [°C] 
1073217600.370                2602        -2.4 



1073217600.390                2595        -2.4 
1073217600.410                2594        -2.3 

Mit Header-Informationen und Zeitstempeln wird die Bedeutung der Messwerte bereits deutlicher. 
Jedoch fehlen auch in diesem Fall Informationen über die beobachtete Radioquelle sowie 
Informationen zur verwendeten Messausrüstung. 

C – Strukturierte Information 
Eine Informationsdarstellung in strukturierter Weise klärt alle Eigenschaften der Messwertdaten bis 
hin zu den kleinsten Details: 
EKD@JO63rx_Dambeck.RSpectro,1073217600 
,Antenne,Parabolspiegel 90cm 
,Azimut:Grad,0 
,Elevation:Grad,15 
,Frequenz:GHz,10.600 
,Bandbreite:kHz,250 
0:Zeit,Flux,Temperatur 
[Sekunden seit 1.1.1970],[Jy],[°C],@ 
1073217600.370,2602,-2.4,1073217600.590 
1073217600.390,2595,-2.4,1073217600.615 
1073217600.410,2594,-2.3,1073217600.640  

Der obenstehende strukturierte Informationsblock erweitert die vorherige Messwertdarstellung mit 
Zeitstempeln um beschreibende Zusatzinformationen (Metainformationen), welche zum Beispiel 
Auskunft über den Entstehungszeitpunkt des Datensatzes (Erfassungszeit / 1.Spalte, Speicherzeit / 
letzte Spalte) sowie die benutzte Spezifikation geben. Weiterhin werden der Operator, der Messort 
sowie die verwendete Messausrüstung mittels Schlüssel (EKD@JO63rx_Dambeck.RSpectro) 
angegeben, ebenso die Beobachtungsdetails wie Antenne, Azimut, Elevation, Frequenz, Bandbreite. 

Bildung von strukturierten Informationen 
Ein gebräuchlicher Weg für das Erzeugen von Strukturen bei einzelnen Informationen ist das Bilden 
von geordneten Informationsmengen, wodurch jeder einzelnen Information im Prinzip eine 
Reihenfolgenummer zugewiesen wird: 
[0:1073217600, 1:Antenne, 2:Azimut, 3:Elevation, 4:Frequenz, 5:Bandbreite, 6:Zeit, 
7:Flux, 8: Temperatur] 

Anschließend können alle Einzelinformationen sowohl durch ihre Reihenfolgenummer als auch 
durch den von ihnen repräsentierten Wert referenziert werden, zum Beispiel Nummer “1:” ist 
gleichbedeutend mit  “Antenne”. 

Grundsätzlich gibt es für die soeben beschriebenen Informationsmengen zwei Möglichkeiten zu 
deren Erweiterung, zum einen in der Größe und zum anderen in der Tiefe. Eine Erweiterung der 
Größe bedeutet, dass der Informationsmenge weitere Elemente hinzugefügt werden. Eine 
Erweiterung der Strukturtiefe hingegen bedeutet, dass neue Informationsmengen gebildet und diese 
einem Element der bestehenden Menge zugeordnet werden. 

Beispiel:          [0: 1073217600, .. 4:Frequenz, ..] 
                       		 	 | 
                        	 	 |_____ [0:GHz, 1:10.600] 

Die Erweiterung von Größe und Tiefe geordneter Informationsmengen führt zu hierarchischen 
Datenstrukturen. Das Adressieren eines Elementes innerhalb der hierarchischen Datenstruktur 
erfordert das Aufzählen aller übergeordneten Bestandteile dieser Struktur, welche somit den Pfad 
von einem obersten Element bis zum adressierten Element darstellen. Dabei können die 



übergeordneten Elemente sowohl mittels ihrer Werte als auch mit ihren Ordnungsnummern, welche 
ihnen in den jeweiligen geordneten Datenmengen zugeteilt wurden, referenziert werden. 

Untenstehend ist ein Vergleich aufgelistet, welcher den Pfad aller Elemente der zuvor aufgeführten 
Beispieldatenstruktur einmal als Folge von Ordnungsnummern auf der linken Seite und zum 
anderen die Werte aller Elemente auf der rechten Seite zeigt: 

0       EKD@JO63rx_Dambeck.RSpectro 
0-0           1073217600 
0-1           Antenne 
0-1-0               Parabolspiegel 90cm 
0-2           Azimut 
0-2-0               Grad 
0-2-1               0 
0-3           Elevation 
0-3-0               Grad 
0-3-1               15 
0-4           Frequenz 
0-4-0               GHz 
0-4-1               10.600 
0-5           Bandbreite 
0-5-0               kHz 
0-5-1               250 
0-6           Zeit 
0-6-0              [Sekunden seit 1.1.1970] 
0-6-0-0               1073217600.370 
0-6-0-1               1073217600.390 
0-6-0-2               1073217600.410 
0-7           Flux 
0-7-0              [Jy] 
0-7-0-0               2602 
0-7-0-1               2595 
0-7-0-2               2594 
0-8           Temperatur 
0-8-0              [°C] 
0-8-0-0               -2.4 
0-8-0-1               -2.4 
0-8-0-2               -2.3  
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Abbildung strukturierter Informationen in einem File/Stream 

Entwurfsziele 
Unter verschiedenen Möglichkeiten zur Abbildung von strukturierten Informationen in einem File/
Stream hat eine solche Lösung den Vorrang, welche bei vorgegebener Informationsmenge das 
geringste Datenvolumen für das File/ den Stream ergibt. Daher werden explizite Strukturelemente 
wie zum Beispiel Tags in XML-Dateien durch implizite Regeln ersetzt werden, welche in der 
überwiegenden Mehrzahl der Fälle ohne explizite Strukturelemente auskommen. In den 
verbleibenden Fällen wird die Strukturinformation in der zuvor dargestellten kurzen Form als Folge 
von Reihenfolgenummern hinzugefügt. 

Zusätzlich zu den bereits aufgeführten Anforderungen besteht ein weiteres Entwurfsziel darin, dass 
die resultierenden FTLight Files/Streams lesbar dargestellt und einzelne Informationselemente 
mittels Texteditor angepasst werden können. 

File/Stream-Struktur 
Ein File/Stream wird aus 8-Bit-Werten (Bytes) erzeugt, welche den Wertevorrat von 0 bis 255 
darstellen. Einige ASCII-Zeichen, wie zum Beispiel 13 (CR-Wagenrücklauf) und 10 (LF-
Zeilenschaltung) werden zum Strukturieren der Dokumente verwendet, während die Mehrzahl der 
Zeichen für die Darstellung von Informationen verwendet wird. 

Zeilen innerhalb eines Files/Streams 
Die oberste Strukturebene einer File/Stream-Struktur (Zeile) wird durch eine Zeilenschaltung 
(CR+LF) erzeugt. Innerhalb einer Zeile sorgen spezielle Trennnzeichen für die Einteilung in 
einzelne Informationselemente. 

Informationselemente innerhalb einer Zeile 
Für die Einteilung einer Zeile in Informationselemente finden vier verschiedene Trennzeichen 
Verwendung: 

44 (Komma)                            - Erweiterung von Pfad oder Informationsmenge, nächstes                       
	 	 	 	 Informationselement ist Text oder numerisch 

59 (Semikolon)                       - Erweiterung von Pfad oder Informationsmenge, nächstes 	  
	 	 	 	 Informationselement ist binär oder speziell  

58 (Doppelpunkt)                    - Neubeginn einer Informationsmenge (auf einem Pfad), nächstes  
	 	 	 	 Informationselement ist Text oder numerisch 

61 (Gleichheitszeichen)          - Neubeginn einer Informationsmenge (auf einem Pfad), nächstes  
	 	 	 	 Informationselement ist binär oder speziell  

Die Erweiterungselemente (Komma, Semikolon) trennen, beginnend am Zeilenanfang, zunächst 
Pfadbestandteile voneinander, solange bis in der Zeile ein Startelement für den Neubeginn einer 
Informationsmenge (Doppelpunkt, Gleichheitszeichen) auftritt. Ab diesem Startelement werden von 
den gleichen Erweiterungselementen (Komma, Semikolon)  Informationselemente auf einer Ebene 
der Hierarchie getrennt. Dies entspricht einer Aufzählung von Elementen auf dem aktuellen Pfad. 

Beispiel: 
      Frequenz:GHz,10.600 



entspricht folgender Struktur: 
0             Frequenz 
0-0                 GHz 
0-1                 10.600 

Achtung: Die Doppelbedeutung der Erweiterungselemente muss bei der Interpretation von FTLight 
Files/Streams beachtet werden, um die Struktur der Informationen korrekt zu rekonstruieren. Eine 
Reduktion der Strukturelemente durch Doppelbelegung stellt keine Einschränkung bei der Bildung 
von Informationsstrukturen dar. Sie ermöglicht jedoch das Auslassen der nicht druckbaren Zeichen 
0..31 sowie das Reservieren von 216 Zeichen für das Kodieren von Binärinformationen (FTL). 

Statusabhängige Steuerzeichen 
Eine von einem Status abhängige Bedeutung von Steuerzeichen erzeugt in der Regel eine hohe 
Komplexität bei der Verarbeitung von Datenströmen. Im Sinne einer höheren Robustheit beim 
Parsen der Daten wird daher in der Regel auf eine Mehrfachbedeutung von Steuerzeichen 
verzichtet. 

In der vorliegenden FTLight-Spezifikation liess sich eine Doppelbedeutung aufgrund der 
erschöpften Codes 0..255 durch die Prioritäten des Designs nicht vermeiden und es wird daher 
bewusst mit einer vom Status (Pfad oder Informationsmenge) abhängigen Bedeutung der 
Steuerzeichen Komma und Semikolon gearbeitet. 

Prioritäten beim Design von FTLight 

1. Hohe Entropie (geringe Redundanz) 

2. Reservieren von 216 Zeichen als Symbole für das Kodieren von Binärinformationen mit hoher 
Effektivität (97%) im FTL-Format 

3. Auslassen der nicht druckbaren Zeichen 0..31, um FTLight-Daten sowohl in einem Texteditor 
anschauen und ändern zu können als auch in Tabellenprogramme zu importieren, Ausnahme 
sind CR (13)  und LF (10) für die Zeilenschaltung in Texteditoren und beim Importieren 

4. Konzeptionell unbegrenzte Tiefe und Größe von hierarchischen Datenstrukturen sowie von 
Datenelementen innerhalb der hierarchischen Strukturen (reale Begrenzungen entstehen erst 
durch Grenzen bei den Ressourcen welche die Datenströme verarbeiten) 

Duplizierte Informationselemente in aufeinanderfolgenden Zeilen 
Sobald ein Informationselement an gleicher Stelle in einer nachfolgenden Zeile auftritt so wird 
dieses einfach weggelassen: 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,1073217600 
EKD@JO63rx_Dambeck.RSpectro,Antenne,Parabolspiegel 90cm 

Ist gleichbedeutend mit: 
EKD@JO63rx_Dambeck.RSpectro,1073217600 
,Antenne,Parabolspiegel 90cm 

und entspricht in beiden Fällen der folgenden Datenstruktur: 
0          EKD@JO63rx_Dambeck.RSpectro 
0-0            1073217600 
0-1            Antenne 
0-1-0               Parabolspiegel 90cm 
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Vergrößerung einer Informationsmenge durch eine Folgezeile 
Das erste unterschiedliche Pfadelement in einer Folgezeile erweitert die Informationsmenge auf der 
entsprechenden Ebene: 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,1073217600 
,Antenne,Parabolspiegel 90cm 

Die erste Zeile gibt folgenden Pfad vor: 
0          EKD@JO63rx_Dambeck.RSpectro 
0-0            1073217600 

während die zweite Zeile die Informationsmenge mit dem Element  “1073217600” um ein neues 
Element “Antenne” erweitert: 
0-1            Antenne 
0-1-0               Parabolspiegel 90cm 

Verwalten eines aktuellen Pfades 
Wenn eine Zeile einen Pfad spezifiziert so wird dieser zum aktuellen Pfad. Falls nachfolgende 
Zeilen ohne explizite Formatkennzeichnung gleich mit Text oder einem binären oder numerischen 
Element beginnen dann bleibt der vorherige Pfad erhalten und kommt als aktueller Pfad zur 
Anwendung. 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro:Zeit,Flux,Temperatur 

Ist gleichbedeutend mit: 
EKD@JO63rx_Dambeck.RSpectro 
Zeit,Flux,Temperatur 

und auch mit: 
EKD@JO63rx_Dambeck.RSpectro 
0:Zeit,Flux,Temperatur 

Und entspricht in allen Fällen der folgenden Datenstruktur: 
0          EKD@JO63rx_Dambeck.RSpectro 
0-0             Zeit 
0-1             Flux 
0-2             Temperatur 

Das “EKD@JO63rx_Dambeck.RSpectro”-Element wird als Pfadursprung (Root) erkannt da es 
ein ‚@’-Zeichen enthält, so wie es bei „Datentypen“ definiert wird. 

Verwalten einer übergeordneten (Parent-)Informationsmenge 
Die auf dem aktuellen Pfad neu erzeugten Elemente einer Informationsmenge werden zur 
übergeordneten (Parent-) Informationsmenge für nachfolgende synchrone Schreiboperationen. 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro 
Zeit,Flux,Temperatur 

Die neu erzeugten Elemente [Zeit,Flux,Temperatur] der Informationsmenge werden zur 
übergeordneten  Informationsmenge auf dem aktuellen Pfad [EKD@JO63rx_Dambeck.RSpectro]. 
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Synchrone Schreiboperationen 
Oft bestehen Datensammlungen aus mehreren Spalten. Das synchrone Schreiben unterstützt das 
Hinzufügen eines weiteren Datensatzes in solch einer Datensammlung mittels einer Zeile. Die 
Elemente dieser Zeile erweitern die entsprechenden Informationsmengen, welche den Elementen 
der übergeordneten (Parent-)Informationsmenge als untergeordnete (Child-)Informationsmengen 
zugeordnet sind, solange nachfolgende Zeilen ohne explizite Formatkennzeichnung gleich mit Text 
oder einem binären oder numerischen Element beginnen. Dies entspricht dem Hinzufügen einer  
weiteren, untergeordneten Überschriftenzeile in einer Tabelle. 

Sehr häufig erfolgen bei Tabellendaten anschließend mehrere synchrone Schreiboperationen ohne 
Wechsel der übergeordneten (Parent-) Informationsmenge (der Header- oder Überschriftenzeile). 
Falls eine Informationsmenge zu  so einer neuen feststehenden (Parent-) Informationsmenge 
werden soll, dann wird der Zeile, welche diese Elemente enthält, ein einzelnes ‚@’-Zeichen als 
letztes Element der Zeile nachgestellt. Unterhalb des '@'-Zeichens (in der Child-
Informationsmenge) werden optional die Systemzeit des Speicherns im gleichen Format wie der 
Zeitstempel am Zeilenanfang und zusätzlich optional die Reihenfolgenummer jedes Datensatzes 
beginnend mit 1 als nächstes Element nach dem Zeitstempel eingetragen. 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro 
Zeit,Flux,Temperatur 
[Sekunden seit 1.1.1970],[Jy],[°C],@ 

Die Elemente der dritten Zeile werden den Informationsmengen zugeordnet, welche mit den 
Elementen der zweiten Zeile verknüpft sind während sie gleichzeitig die Rolle der übergeordneten 
(Parent-) Informationsmenge für nachfolgende Zeilen übernehmen. Die Datenstruktur sieht daher 
folgendermaßen aus: 
0       EKD@JO63rx_Dambeck.RSpectro 
0-0         Zeit 
0-0-0         [Sekunden seit 1.1.1970] 
0-1        	Flux 
0-1-0         [Jy] 
0-2         Temperatur 
0-2-0         [°C] 
0-3         <leer> 
0-3-0         @ 

Das Hinzufügen von Datensätzen zum vorherigen Beispiel füllt die Tabelle mit Daten: 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro 
Zeit,Flux,Temperatur 
[Sekunden seit 1.1.1970],[Jy],[°C],@ 
1073217600.370,2602,-2.4,1073217600.590,1 
1073217600.390,2595,-2.4,1073217600.615,2 
1073217600.410,2594,-2.3,1073217600.640,3  

Insgesamt führt dies zur folgenden Datenstruktur: 
0          EKD@JO63rx_Dambeck.RSpectro 
0-0             Zeit 
0-0-0             [Sekunden seit 1.1.1970] 
0-0-0-0             1073217600.370 
0-0-0-1             1073217600.390 
0-0-0-2             1073217600.410 
0-1             Flux 
0-1-0             [Jy] 
0-1-0-0             2602 



0-1-0-1             2595 
0-1-0-2             2594 
0-2             Temperatur 
0-2-0             [°C] 
0-2-0-0             -2.4 
0-2-0-1             -2.4 
0-2-0-2             -2.3 
0-3             <leer> 
0-3-0          	 @ 
0-3-0-0             1073217600.590 
0-3-0-1             1073217600.615 
0-3-0-2             1073217600.640 
0-4             <leer> 
0-4-0          	 <leer> 
0-4-0-0             1 
0-4-0-1             2 
0-4-0-2             3 

Füllen von Tabellenspalten mit formatierten Arrays 
Beim Füllen von Tabellenspalten wird in der Regel das Format der Parent-Zeile auf die 
untergeordneten Child-Zeilen übertragen soweit keine anderen Formatfestlegungen erfolgen. Wenn 
zum Beispiel in der Parent-Zeile Angaben zur Skalierung im Binärformat erfolgen dann erhalten 
alle Werte der untergeordneten Tabellenzeilen ebenfalls das Binärformat. 

Tabellendaten können auch als Array in einem der Formate MCL, FTL, TXL oder DIF in die Child-
Zeilen eingetragen werden indem eine Array-Formatdefinition in die erste Zeile der Tabelle 
eingetragen wird. Die Elemente der ersten Dimension des Arrays werden dadurch fortlaufend den 
Spalten der Tabelle zugeordnet. Mit einer weiteren Formatdefinition erfolgt die Zuordnung zu den 
nachfolgenden Tabellenspalten im Anschluss an die bereits zugeteilten Spalten. 

Die Verwendung von Arrays kann vorteilhaft die Datenmenge durch Wegfall der Separatoren 
zwischen den Elementen einer Zeile und am Zeilenende verringern. Bei Anwendung des  DIF 
Formates ergibt sich weiterhin in der Regel eine Reduktion der Datenmenge durch 
Datenkompression.  

Das Schreiben von Tabellendaten erfolgt zeilenweise. Wenn die erste Zeile der Tabelle mehrere 
Array-Formatdefinitionen enthält dann werden die Zeilen von den einzelnen Arrays zu jeweils einer 
Tabellenzeile zusammengefügt. 

Volatiles Synchronschreiben 
Wenn Datensätze lediglich einen Augenblickswert besitzen und zum Beispiel nur zur dynamischen 
Anzeige dienen, dann können sie als „volatil“ eingestuft werden. In diesem Fall wird keine 
Speicherung vorgenommen. Ein Beispiel wäre die Übertragung der Uhrzeit, bei der es in der Regel 
wenig sinnvoll wäre, jeden neuen Sekundenwert zu speichern. Andererseits kann bei 
Videoübertragungen das Speichern des Datenstromes wegen des großen Speichervolumens, aus 
Gründen einer geringen Relevanz oder aus rechtlichen Gründen nicht durchführbar sein. Dennoch 
wird es jedoch in der Regel technisch sinnvoll sein, eine begrenzte Anzahl zurückliegender 
Datensätze vorzuhalten, um diese z.B. bei Übertragungsstörungen neu übertragen zu können. 

Die genannten Anforderungen werden durch einen Ringpuffer mit Speicherplätzen für N Datensätze 
erfüllt. Die Anzahl der Datensätze im Ringpuffer kann 0 oder größer sein und wird bei synchronen 
Schreiboperationen im Feld nach dem '@'-Zeichen angegeben. Bei 0 erfolgt kein Vorhalten von 
Datensätzen sondern ein direktes Überschreiben der vorherigen Daten und der Ringpuffer ist in 
diesem Fall nicht existent. Falls jedoch, so wie zuvor beschrieben, keine Größe des Ringpuffers 
spezifiziert wurde dann werden alle Datensätze gespeichert. 



Wenn alle Datensätze gespeichert werden (nur '@'), dann ist in der Regel kein Anfügen einer 
Reihenfolgenummer bei den Datensätzen erforderlich, weil diese sich implizit aus der Datenstruktur 
ergibt. Falls in diesem Fall unterhalb der '@'-Position nur ein Wert erscheint, dann wird dieser daher 
als Systemzeitstempel des Speicherns im gleichen Format wie der Zeitstempel am Zeilenanfang 
interpretiert. Bei Angabe der Größe eines Ringpuffers und nur einem Wert unterhalb der '@'-
Position wird dies jedoch als Reihenfolgenummer des Speicherns im Ringpuffer interpretiert. 

Beispiel für einen Übertragungszeitpunkt mit Ringpuffer und Reihenfolgenummer: 
EKD@JO63rx_Dambeck.RSpectro 
Zeit,Flux,Temperatur 
[Sekunden seit 1.1.1970],[Jy],[°C],@,3 
1073217600.410,2602,-2.4,129 
1073217600.370,2595,-2.4,127 
1073217600.390,2594,-2.3,128  

Der Ringpuffer umfasst 3 Datensätze. Im ersten Datensatz befinden sich die zuletzt erfassten Daten. 
Im Datensatz 2 liegen die ältesten Daten vor, welche als nächstes überschrieben werden.  

Wiederaufsetzen beim Synchronschreiben 
Wenn ein Synchronschreiben nach dem Schreiben anderer Daten an einem vorherigen Punkt wieder 
neu aufgesetzt werden soll, dann wird dazu im ersten Feld einer Zeile die Adresse des '@'-Zeichens 
vom unterbrochenen Synchronschreiben und optional eine Ringpufferlänge angegeben. Zusätzlich 
kann in einem weiteren Feld eine von 0 abweichende Position zum Fortsetzen des 
Synchronschreibens angegeben werden, z.B. 
0-3-0,3,130 

setzt das Schreiben der obenstehenden Tabelle an Position 130 im dreizeiligen Ringpuffer fort. 

Datentypen am Zeilenanfang 
Das oberste Design-Ziel (hohe Entropie/geringe Redundanz) legt einen Verzicht auf einen 
expliziten Datentyp am Anfang einer Zeile nahe, weil sich dort zu einem sehr großen Teil immer ein 
Zeitstempel befindet. 

Beim Schreiben auf einem aktuellen Pfad und allgemein beim synchronen Schreiben von 
Datensätzen fehlt somit am Zeilenanfang eine Kennzeichnung für den Datentyp. Dieser leitet sich 
daher implizit aus folgenden Regeln ab: 

• beim synchronen Schreiben wird der Datentyp des übergeordneten Elementes übernommen 

• wenn kein synchrones Schreiben aktiv ist, dann stellt ein Adressformat eine Adresse dar 

• wenn kein synchrones Schreiben aktiv ist, dann stellt ein numerisches Format eine Zahl dar 

• wenn keiner der aufgeführten Fälle zutrifft dann stellt der Feldinhalt einen Text dar 

Aus den genannten Regeln leitet sich insbesondere die Einschränkung ab, dass ein binärer Inhalt am 
Zeilenanfang nur beim synchronen Schreiben erkannt wird. Wenn dagegen ein binärer Inhalt am 
Zeilenanfang beim Schreiben einer Informationsmenge auf einem Pfad auftritt, dann muss eine 
explizite Kennzeichnung des Datentyps erfolgen, z.B. durch Voranstellen einer Adresse für den 
aktuellen Pfad, gefolgt von einem Gleichheitszeichen als Kennung für das Binärformat. 

Diese Kontextabhängigkeit beim Herleiten des Datentypes führt ähnlich wie bei den Trennzeichen 
Komma und Semikolon zu einer hohen Komplexität bei der Verarbeitung von FTLight-Daten, 
welche zum Erreichen der genannten Design-Ziele bewusst in Kauf genommen wird. Beim 
Erkennen von Binärdaten am Zeilenanfang ohne synchrones Schreiben liegt daher ein Fehler vor. 



Tabellen-Import 
Die strukturierten Daten aus den vorherigen Beispielen können in ein Tabellenprogramm importiert 
werden und führen zur nachfolgend gezeigten Ansicht. Somit wurde das Entwurfsziel erreicht, dass 
die Anzeige von strukturierten Daten eines Files/Streams in lesbarer Form erfolgen kann. Weiterhin 
sind alle Daten somit auch einer direkten Weiterverarbeitung in Tabellenform zugänglich: 

EKD@JO63rx_Dambeck.RSpectro

Zeit Flux Temperatur

[Sekunden seit 1.1.1970] [Jy] [°C] @

1073217600.370 2602 -2.4 1073217600.590 1

1073217600.390 2595 -2.4 1073217600.615 2

1073217600.410 2594 -2.3 1073217600.640 3



Vergleich von FTLight-Strukturen mit Verzeichnissen, 
Registraturen und Datenbanken 
Nach der Einführung von Informationsmengen kann die Frage auftauchen, welchen Unterschied es 
zwischen FTLight-Informationsmengen und den damit zusammenhängenden hierarchischen 
Strukturen einerseits und den gut bekannten Informationsstrukturen wie Verzeichnissen in 
Dateisystemen, Registraturen und Datenbanken andererseits gibt. Eine kurze Antwort wäre, dass 
mit der FTLight-Spezifikation künstliche Beschränkungen beseitigt werden, welche den anderen 
genannten Datenstrukturen vorwiegend aus Performance-Gründen und zum Zweck eines effektiven 
Ressourcen-Management auferlegt wurden. 

Die FTLight-Spezifikation ist ebenfalls auf Performance und effektives Ressourcen-Management 
ausgerichtet. Jedoch wird mit höchster Priorität eine konzeptionelle Grenzenlosigkeit angestrebt. 
Beschränkungen werden erst dann sichtbar, wenn eine FTLight-Datei in ein Dateisystem 
geschrieben wird oder wenn ein FTLight-Stream zwischen Computern übertragen wird. Die in 
solchen praktischen Anwendungen auftretenden Beschränkungen resultieren aus der endlichen 
Größe des zur Verfügung stehenden Speicherplatzes beziehungsweise aus der begrenzten 
Bandbreite des Übertragungskanals zwischen Computern, der den FTLight-Stream überträgt. 

Im folgenden werden einige Fallbeispiele betrachtet, wie die FTLight-Spezifikation Schranken 
überwindet: 

Verzeichnisse in Dateisystemen 
Gewöhnlich werden von jedem Dateisystem Beschränkungen bezüglich der Größe von 
Pfadkomponenten sowie bezüglich der Zeichen gemacht, welche in Pfadkomponenten vorkommen 
dürfen. Zusätzlich unterliegt oftmals die Gesamtlänge eines Pfades einer Beschränkung durch das 
Dateisystem oder durch das Betriebssystem, welches das Dateisystem anwendet. Eine übliche 
Beschränkung für die Gesamtlänge eines Pfades ist zum Beispiel 1024 Byte, wobei solche Zeichen 
wie Slash ‚/’ oder Backslash ‚\’ nicht innerhalb von Pfadkomponenten vorkommen dürfen. 

Die genannten Beschränkungen werden in der FTLight-Spezifikation überwunden. Die 
Komponenten eines Pfades wie auch die Gesamtlänge eines Pfades sind konzeptionell 
unbeschränkt. Weiterhin sind gleich zwei Datentypen verfügbar (Text und Binär), welche das 
Erzeugen von Pfadkomponenten aus beliebigen 1-Byte-Zeichen 0..255 sowie auch aus beliebigen 
Bit-Feldern als Bestandteil eines Pfades ermöglichen. 

Registraturen 
Grundsätzlich gibt es keine großen konzeptionellen Unterschiede zwischen einem Eintrag in einer 
Registratur (z.B. Windows Registry) und einer Datei in einem Dateisystem außer zusätzlicher 
Beschränkungen bezüglich der Größe von Einträgen in einer Registratur. Eine gemeinsame 
Beschränkung beider Strukturen besteht darin, dass auf einem gegebenen Pfad jeder Datei 
beziehungsweise jedem Namen einer Registratur immer nur ein Inhalt zugewiesen werden kann. 
Sobald mehrere Werte zugewiesen werden sollen muss die Struktur immer erst um eine neue Ebene 
ergänzt werden. 

In einer Registratur würde die zusätzliche Ebene aus mehreren Einträgen bestehen, wobei jeder 
Eintrag einen eigenen eindeutigen Namen aufweisen muss. Anschließend können die Werte den 
Namen zugeordnet werden. Eine äquivalente Vorgehensweise in einem Dateisystem wäre das 
Anlegen von Dateien mit unterschiedlichen Dateierweiterungen (Extensions), zum Beispiel .exe für 
ausführbare Dateien und .ini für die Initialisierungsinformation während die Dateinamen vor der 



Extension gleich wären. Dies wäre jedoch nur eine Umgehungslösung für die genannte 
Beschränkung. 

Die FTLight-Spezifikation überwindet die Einschränkung, dass einem Namen in einer Registratur 
oder einem Dateinamen nur ein einziger Wert zugewiesen werden kann durch den Ansatz, dass 
jedem Pfad eine konzeptionell unbegrenzte Menge von Informationselementen zugewiesen werden 
kann. Das ermöglicht zum Beispiel das Verwalten aller Messwertdaten unter dem Namen der 
Datenquelle, welche diese Werte generiert hat. Der Vorteil gegenüber dem Abspeichern aller 
Messwertdaten in einer Datei besteht darin, dass jeder einzelne Messwert ein eigenständiges 
Informationselement unter dem Dach einer gemeinsamen Spezifikation darstellt und dass somit 
keine zusätzlichen Regeln für das Schreiben/Lesen solcher Werte in/aus Dateien erforderlich sind. 

Man kann die FTLight-Spezifikation somit als Vereinheitlichung der traditionellen Konzepte 
von Pfad, Verzeichnis und Dateien mit den unterschiedlichsten Dateiformaten in einem 
gemeinsamen Konzept ansehen, wo Informationsmengen mit anderen Informationsmengen 
verknüpft werden mit der Absicht, unbeschränkte hierarchische Informationsstrukturen zu 
schaffen. 

Datenbanken 
Relationale Datenbanken sind in der Regel hoch-effektiv beim Verwalten von Tabellen-artigen 
Daten, welche durch einen Satz von Regeln zwischen den Tabellen beschrieben werden können. 
Dagegen sind sie für das Verwalten von hierarchisch organisierten Daten oftmals weniger gut 
geeignet. 

Die FTLight-Spezifikation erweitert das Konzept hierarchischer Datenstrukturen durch die 
Fähigkeit, Tabellen-artige Daten in synchronisierten geordneten Informationsmengen zu verwalten, 
zum Beispiel im Falle von Messwertdatenserien mit einem Zeitstempel als Schlüssel von 
Messwertdatensätzen. 



Datentypen 
Die folgenden Datentypen erlauben es, die Informationselemente in der jeweils zutreffendsten Art 
darzustellen. Die Definition erfolgte so, dass ein Parser bei der Verarbeitung eines FTLight-Streams 
die einzelnen Elemente eindeutig identifizieren kann: 

• Text                (Single-Byte-Zeichen von 0..255, unbegrenzte Anzahl) 

• Zahlen            (Alle Zahlenformate, die ausschließlich folgende Zeichen verwenden: 
                         “0123456789 - + . E e X x A a B b C c D d F f”) 

• Binär              (Alle Bit-Felder, angefangen von Einzelbit bis zu unbegrenzter Bit-Anzahl) 

• Identifikator   (enthält Informationen zum Operator, dem Ort sowie zu einem Thema) 

• Adresse          (ermöglicht das Referenzieren von Elementen innerhalb eines Files/Streams 
                        sowie das Herstellen von Verbindungen [Links]) 

Sonderzeichen 
Die folgenden Zeichen haben eine spezielle Bedeutung innerhalb von FTLight Files/Streams und 
müssen daher in allen Datentypen, wo Verwechselungen möglich sind vermieden werden bzw. ihre 
Sonderbedeutung muss mittels vorangestelltem Backslash entwertet werden. 

• 10 (Zeilenschaltung)              	 - Zeilentrenner 

• 13 (Wagenrücklauf)                	 - Zeilentrenner 

• 44 (Komma)                           	 - Feldseparator 

• 45 (Minuszeichen)                  	 - Adresselement 

• 58 (Doppelpunkt)                   	 - Feldseparator 

• 59 (Semikolon)                       	 - Feldseparator 

• 61 (Gleichheitszeichen)         	 - Feldseparator 

• 64 (@ Zeichen)                      	 - Identifikator, Operator 

• 96 (Back-Apostroph)              	 - Anfrageoperator/„Leere“ (QUERY, EMPTY) 

• 127 (Löschen)            	 	 - Löschoperator (DEL) 

Textdatentyp 
Der Textdatentyp kann alle Einzelbyte-Zeichen von 0..255 darstellen. Für die Vermeidung von 
Konflikten mit den Sonderzeichen müssen diese wie zuvor beschrieben in ihrer Sonderbedeutung 
entwertet werden, was durch Voranstellen eines Backslash ‘\’ bewirkt wird. Beim Verarbeiten eines 
Textes muss das Backslash-Zeichen vor Sonderzeichen wieder entfernt werden. 

Die Möglichkeit der Darstellung sämtlicher Einzelbyte-Zeichen ermöglicht es grundsätzlich, mit 
dem Textdatentyp beliebige Daten einschließlich Binärdaten darzustellen. Jedoch sollte man sich 
bewusst sein, dass Dateien mit dieser Darstellung möglicherweise nicht mit normalen Texteditoren 
geöffnet werden können, weil sie unter anderem auch die Steuerzeichen (0..31) enthalten können. 

Weiterhin kann bei angenommener Gleichverteilung aller Zeichen im Text durch das Hinzufügen 
eines Backslash zu den Sonderzeichen insgesamt mit einer Effektivität der Kodierung von etwa 
96% gerechnet werden. Aus diesem Grunde sollte dem Binärdatentyp der Vorrang gegeben werden, 



welcher eine Effektivität der Kodierung von 97% erreicht. Weiterhin werden mit dem Binärdatentyp 
alle Sonderzeichen (0..31) bereits vom Design her vermieden.. 

Beispiele: 

Dies ist ein Beispiel für den Textdatentyp\: “mail\@server.com”. 

Datentyp für Zahlendarstellung 
Sobald ein als Text/Zahl deklariertes Feld ausschließlich die Zeichen “0123456789 - + . E e X x A a 
B b C c D d F f” enthält wird es weiter analysiert, ob es einer gültigen Zahlendarstellung entspricht. 
Falls dies der Fall ist, dann wird das Feld in eine Zahl konvertiert. Die Länge einer Zahl unterliegt 
keinerlei Beschränkungen. 

Die folgenden Zahlendarstellungen werden akzeptiert: 

• Integer – jede Kombination der Ziffern 0..9, z.B. 0, 10, 938776658832671414423574758  

• Fließkomma – zwei Integer-Zahlen, verbunden mit einem Punkt, z.B. 123.4, 0.56, .87, 543.  

• Wissenschaftlich – Fließkomma zuzüglich Exponent, z.B. 0.56E-2, 0.62e12, 4.283E+5  

• Hexadezimal – ‘0x’ oder ‘0X’ gefolgt von Hexadezimalzeichen 0..9,A..F,a..f, z.B. 0x03FC  

Arrays von Zahlen und Text 
Für das Kodieren von Zahlen/Text-Arrays wird das Back-Apostroph (ASCII-Code 96) verwendet. 
Wenn dieses in einem Zahlen/Text-Feld ohne Entwertung durch Backslash-Zeichen erscheint und 
nicht direkt von einem Feldseparator gefolgt wird, dann leitet es ein Array von Zahlen/Text ein. Die 
Anzahl der Back-Apostrophs steuert dabei die Ebene in den Array-Dimensionen, z.B: 
EKD@JN58nc.Array,0 
,Zahlen`1,2,3 
,Text`A,B,C 

Das Array 'Zahlen`1,2,3' führt auf eine ähnliche hierarchische Struktur wie bei Verwendung eines 
Doppelpunktes 'Zahlen:1,2,3' zum Start einer neuen Informationsmenge, jedoch auf der nächst 
tieferen untergeordneten  Ebene. Weiterhin können mit dem Back-Apostroph im Unterschied zum 
Doppelpunkt beliebig viele Ebenen von Array-Dimensionen durch die Anzahl der aufeinander 
folgenden Back-Apostrophs adressiert werden, z.B. ein zweidimensionales Array: 
EKD@JN58nc.Array,0 
,Zahlen``1,2,3,`4,5,6,`7,8,9 

Obenstehend wird durch ein doppeltes Back-Apostroph ein zweidimensionales Array eingeleitet. 
Anschließend folgen drei eindimensionale Arrays, welche die Zeilen des zweidimensionalen Arrays 
darstellen. Die Bereiche der Indizes ergeben sich jeweils aus der maximalen Anzahl von Elementen.   

Die Verwendung des Back-Apostrophs (=QUERY/EMPTY-Operator) als Trennzeichen am Anfang 
des Arrays ordnet das gesamte Array dem „Leere“-Index innerhalb der Informationsmenge zu, im 
Gegensatz zu den üblichen Indizes 0,1,..,N für  alle anderen Elemente der Informationshierarchie.  

Wenn eine Adressangabe von Back-Apostrophs eingeschlossen ist dann wird dies zur Anfrage nach 
dem adressierten Element des Arrays, bzw. zur Anfrage nach dem adressierten Teil (Untermenge) 
des vollständigen Arrays, z.B.:  
EKD@JN58nc.Array,Zahlen`2-1` 

gibt nur das Element „8“ von der Position 2-1 aus dem oben definierten Array zurück, während 
EKD@JN58nc.Array,Zahlen`1` 



die Zeile 4,5,6 zurück gibt.  

Arrays unterschiedlicher Dimensionen an der gleichen Position beeinflussen sich gegenseitig nicht 
und können daher unabhängig voneinander geschrieben und gelesen werden. 

Binärer Datentyp (FTL) 
Das Kodieren von Binärdaten basiert auf einem Satz von FTLight-Symbolen, welche die Werte von 
0..215 repräsentieren. Diese Symbole (0..215) werden in FTLight Files/Streams in solcher Weise 
den verfügbaren Zeichen (0..255) zugeordnet, dass kein Steuerzeichen (0..31) und keines der 
festgelegten Sonderzeichen für die Darstellung eines Symbols benötigt wird. 

Die Wandlung von Symbolen in erweiterte ASCII-Zeichen geschieht in folgender Weise: 

            Symbol = 12   => Zeichen = 248                    (vermeiden von 44   - Komma) 
            Symbol = 13   => Zeichen = 249                    (vermeiden von 45   - Minuszeichen) 
            Symbol = 26   => Zeichen = 250                    (vermeiden von 58   -  Doppelpunkt) 
            Symbol = 27   => Zeichen = 251                    (vermeiden von 59   -  Semikolon) 
            Symbol = 29   => Zeichen = 252                    (vermeiden von 61   -  Gleichheitszeichen) 
            Symbol = 32   => Zeichen = 253                    (vermeiden von 64   -  @ Zeichen) 
            Symbol = 64   => Zeichen = 254                    (vermeiden von 96   -  Back Apostroph) 
            Symbol = 95   => Zeichen = 255                    (vermeiden von 127 -  Löschen) 
            alle anderen    => Zeichen = Symbol + 32 

In der Gegenrichtung von einem Zeichen zum Symbol geschieht die Konvertierung wie folgt: 

            Zeichen 32..247          => Symbol = Zeichen – 32 
            Zeichen 248                => Symbol = 12 
            Zeichen 249                => Symbol = 13 
            Zeichen 250                => Symbol = 26 
            Zeichen 251                => Symbol = 27 
            Zeichen 252                => Symbol = 29 
            Zeichen 253                => Symbol = 32 
            Zeichen 254                => Symbol = 64 
            Zeichen 255                => Symbol = 95 

Vier aufeinanderfolgende Symbole aus einem Binärdatenfeld werden mit einem Radix von 216 zu 
einem 31-Bit-Feld kombiniert. Falls mehr als 31 Bits im Binärdatenfeld enthalten sind dann wird 
ein Vielfaches von 4 Zeichen für die Kodierung verwendet, bzw. es werden ein, zwei oder drei 
Zeichen angefügt, solange bis die Länge des Bit-Feldes erreicht ist. In dieser Weise können 
Binärdaten beliebiger Länge wie z.B. auch Grafiken, Sound- und Videodateien kodiert werden. 

Beispiel: 

            Das Binärdatenfeld ‘ABCD’ wird in folgende Symbole übersetzt: 

            A => 65-32=33            B => 66-32=34            C => 67-32=35            D => 68-32=36 

            Daraus ergibt sich für den Wert des Bit-Feldes:  

                        (((33 * 216 + 34) * 216) + 35) * 216 + 36 = 334157868 

            was äquivalent zum folgenden Bit-Feld ist: 0010011111010101101100000101100 

Das gewählte Kodierschema repräsentiert ein 31-Bit-Feld durch vier Zeichen des erweiterten 
ASCII-Zeichensatzes. Dies entspricht einer 31/32-Effizienz oder etwa 97% im Vergleich zum reinen 
Binärformat. 



Der verfügbare Wertebereich für eine Gruppe von vier Symbolen entspricht  

216^4 - 1 = 2,176,782,335. 

Im Vergleich zum, mit diesen Symbolen dargestellten, Maximalwert eines 31-Bit-Feldes von 
2,147,483,647 existieren somit insgesamt  29,298,688 ungenutzte Kombinationen. 

Offene Aufgabe:  

Die Überschusskombinationen bieten eine gute Gelegenheit für erweiterte Funktionen, wie z.B. 
Möglichkeit für beliebige Bit-Zahlen, Kompression von zusammenhängenden Null-Bit oder Eins-
Bit-Feldern sowie Kompression von sich wiederholenden komplexen Strukturen. 

Zahlendarstellung im Binärformat (NUM) 
Beim Umgang mit Zahlen haben sich zweckmäßige, lesbare Formen in Abhängigkeit vom 
Anwendungsfall herausgebildet, z.B. Integer-Zahlen für Zählvorgänge oder die 
Exponentialschreibweise im wissenschaftlichen Bereich mit einem Bedarf an effektiver Darstellung 
auch von sehr großen oder sehr kleinen Zahlen. Diesen Anforderungen soll in FTLight durch eine 
Definition von gängigen Zahlenformaten entsprochen werden.  

Das Repräsentieren von Zahlen erfordert die folgenden Elemente: 

• Integer-Zahlen  

• Negative Zahlen  

• Brüche von Integer-Zahlen (rationale Zahlen)  

• Exponent  

• Basis zu einem Exponenten  

• Negativer Exponent  

Zunächst wird der Basistyp des Binärformats (FTL) für das Kodieren beliebig großer Integer-
Zahlen verwendet. Das Back-Apostroph (96) wird anschließend zur Strukturierung eines 
Binärdatenfeldes in mehrere Komponenten entsprechend der Topologie nach folgendem Muster 
verwendet: 

FTL                                	 - Integer-Zahl, z.B. 123 

`FTL                               	 - -FTL, negative Zahl (hier: Integer-Zahl), z.B. -123 

FTL`                               	 - 1 / FTL, Bruch, z.B. 1/123 

FTL1`FTL2                  	 - FTL1 * FTL2, Produkt von Integer-Zahlen, z.B. 123*10=1230 

FTL1`FTL2`                	 - FTL1 / FTL2, Bruch von Integer-Zahlen, z.B. 123/10=12.3 

FTL1`FTL2`FTL3         	 - FTL1 * FTL2 exp FTL3, wissenschaftlich, z.B. 123E+4 

FTL1`FTL2``FTL3        	 - FTL1 * FTL2 exp -FTL3, wissenschaftlich, z.B. 123E-4 

FTL1`FTL2`FTL3`FTL4   	 - FTL1 / FTL2 * FTL3 exp FTL4, wissenschaftlich, 1.3E+4 

FTL1`FTL2`FTL3``FTL4  	 - FTL1 / FTL2 * FTL3 exp –FTL4, wissenschaftlich, 1.3E-4 



Repräsentieren von Datentypen im Binärformat (DTI_...) 

Anforderungen 

Es ist üblich, dass jede Softwareanwendung ein spezifisches Datenformat verwendet, sobald Daten 
persistent auf ein Speichermedium geschrieben werden bzw. wenn Daten von einer Instanz der 
Anwendung zu einer zweiten Instanz der Anwendung übertragen werden. Diese Datenformate 
werden von Entwicklern einer Software basierend auf den gestellten Anforderungen in der Regel 
derart festgelegt, dass die Daten in möglichst effizienter Weise übertragen und gespeichert werden 
können.  

Oftmals treffen diese einmal erfolgten Festlegungen zu einem späteren Zeitpunkt auf Hindernisse, 
wenn die auf den ursprünglichen Anforderungen basierenden Formate für das Einführen neuer 
Eigenschaften nicht mehr ausreichen und daher die Festlegungen erweitert oder eventuell auch 
geändert werden müssen. Vom Benutzerstandpunkt aus geht die Software dabei während ihres 
Lebenszyklus durch verschiedene Versionen, wobei die Verträglichkeit der Datenformate von 
aufeinanderfolgenden Softwareversionen eine der größten Herausforderungen für die Entwickler 
darstellt. In der Vergangenheit gab es dabei oftmals keine Möglichkeit für eine Rückwärts-
Kompatibilität, wodurch der einzige Ausweg im Festlegen eines neuen Datenformates bestand und 
wo Forderungen nach Verarbeitbarkeit älterer Formate durch geeignete Konverter gelöst wurden. 

Konzept 

Obwohl die FTLight-Spezifikation ihrerseits als offener Container für das Speichern und 
Übertragen beliebiger Datenstrukturen in effizienter Weise entwickelt wurde, so kann es dennoch 
sinnvoll sein, vorhandene Dateien durch einen FTLight-Container zu umschließen, z.B. um von der 
flexiblen Metadaten-Darstellung in FTLight zu profitieren. Gleichzeitig können die mit 
aufeinanderfolgenden Versionen in Zusammenhang stehenden Probleme transparent gelöst werden, 
indem die entsprechenden FTLight-Elemente wie eindeutige Identifikatoren und interne Referenzen 
in Verbindung mit dem Update-Mechanismus zum Einsatz kommen. Weiterhin kann auch die 
Einführung unterschiedlicher Binärformate empfehlenswert sein, wenn dadurch spezifische 
Anforderungen wie z.B. zur Verarbeitungsgeschwindigkeit oder zur Datenkompression besser 
gelöst werden, als wie dies mit der standardmäßigen FTLight-Repräsentation von Binärdaten der 
Fall ist . Die folgenden Datenelemente gestatten es daher, andere Datenformate (extern zu FTLight) 
zu kapseln wie auch die eingebauten Formateigenschaften in transparenter Weise zu erweitern. 

Datentyp-Identifikator (DTI) 
Die ersten vier FTLight-Symbole in einem binären Datenfeld dienen als Datentyp-Identifikator. 
Sobald ein Datentyp-Identifikator in einem binären Datenfeld erkannte wurde wird dieser auch auf 
alle untergeordneten Binärdatenfelder übertragen. Alle Datentyp-Identifikatoren werden als 
little endian übertragen. 

Datentypen können kaskadiert werden, wie zum Beispiel DTI_UNIT und DTI_FTL. Im genannten 
Fall wird mit DTI_UNIT eine Skalierung aller nachfolgenden Binärwerte mit Bezug auf eine 
physikalische Einheit festgelegt und DTI_FTL kann anschließend ein mehrdimensionales Array der 
Werte definieren. 

Ein Datentyp-Identifikator benutzt solche Kombinationen von FTLight-Symbolen, welche nicht 
bereits zur Darstellung von 31-Bit-Feldern durch vier Zahlen mit einem Radix von 216 Verwendung 
finden. Falls stattdessen die ersten vier Symbole bereits ein gültiges 31-Bit-Datenfeld darstellen, 
dann handelt es sich um ein herkömmliches binäres FTL-Datenfeld ohne Typinformation. 



Die folgenden Datentyp-Identifikatoren sind basierend auf dem Maximalwert von 

FTLmax = 216^4 – 1 = 2,176,782,335 absteigend definiert: 

DTI_FTLightOpen	 = FTLmax - 0    = 2,176,782,335	 - Offenes Format mit FTLight-
Symbolen 

DTI_FTLightWrap	 = FTLmax - 1    = 2,176,782,334	 - Beliebiges Format mit FTL gekapselt 

DTI_MCL	 	 = FTLmax - 2    = 2,176,782,333	 - MCL-kodiertes Bitfeld-Array 

DTI_FTL	 	 = FTLmax - 3    = 2,176,782,332	 - FTL-kodiertes Bitfeld-Array 

DTI_TXL	 	 = FTLmax - 4    = 2,176,782,331	 - TXL-kodiertes String-Array 

DTI_DIF	 	 = FTLmax - 5    = 2,176,782,330	 - DIF-kodiertes Integer-Array 

DTI_UNIT	 	 = FTLmax - 6    = 2,176,782,329	 - FTL-kodierte physikalische Einheit  

DTI_TIME	 	 = FTLmax - 7    = 2,176,782,328	 - FTL-kodierte Zeiteinheit 

DTI_TOKEN		 = FTLmax - 8    = 2,176,782,327	 - Token für Cosmos-Kommunikation 

DTI_LINK	 	 = FTLmax - 9    = 2,176,782,326	 - Link auf lokal erreichbares Modul 

Die Werte der Datentyp-Identifikatoren dürfen mit Rücksicht auf gespeicherte Daten NIEMALS 
geändert werden, weil andernfalls die Interpretation von gespeicherten Daten fehlschlagen kann. 
Erweiterungen können jedoch je nach Bedarf erfolgen. 

Typsteuerfelder (ControlX) 

Ein Datentyp-Identifikator kann von Typsteuerfeldern gefolgt sein. Die Bedeutung der 
Typsteuerfelder ist spezifisch und wird für jeden Typ separat beschrieben. Ein Steuerfeld ist eine 
unbegrenzte Zeichenfolge, welche nach FTL-Regeln kodiert ist. Die Steuerfelder sind durch Back-
Apostroph (96) voneinander getrennt: 

DTI_xxx`FTL(n)`ControlX1`…`ControlXn-1`DTI_xxx(Binärdaten) 

Das erste Steuerfeld enthält jeweils die Gesamtanzahl aller Steuerfelder. Daher wurde es mit  
FTL(n) = ControlX0 benannt. Das nach den Steuerfeldern folgende DTI_xxx(Binärdaten)-
Datenfeld enthält die nach den Regeln des jeweiligen DTI-Datentyps kodierten Daten. 

Falls das Zeichen nach dem Datentyp-Identifikator kein Back-Apostroph ist dann stellt der darauf 
folgende Binärdatenblock ein homogenes, eindimensionales Bit- oder Integer-Feld vom DTI_xxx-
Datentyp dar, ohne weitere Strukturinformationen, zumindest keine, die dem FTLight-Container 
bekannt wären. 

DTI_FTLightOpen-Datentyp 
Der DTI_FTLightOpen-Datentyp stellt eine Einladung zum Entwickeln weiterer hochspezifischer 
Datenformate dar, welche auf der Basis des Radix-216-Schemas und unter ausschließlicher 
Verwendung von zulässigen FTLight-Zeichen arbeiten. Es wird empfohlen, dass eine Beschreibung 
des jeweiligen Datenformats im Internet erfolgt und dass eine URL zu dieser Beschreibung in  
ControlX1 = URL gegeben wird: 

DTI_FTLightOpen`FTL(n)`FTL(URL)`…`ControlXn-1`DTI_FTLightOpen(Binärdaten) 

Die Anzahl der Steuerfelder, welche auf die URL folgen, ist spezifisch für das jeweilige 
Datenformat. Falls nach dem DTI_FTLightOpen-Identifikator kein Back-Apostroph folgt dann gilt 
für das sich anschließende Binärdatenfeld eine Kodierung im FTL-Format. 



DTI_FTLightWrap-Datentyp 
Der DTI_FTLightWrap-Datentyp dient zum Kapseln von Datenformaten, die bereits außerhalb von 
FTLight bestehen sowie zum Kapseln von kompletten FTLight-Archiven. Es wird empfohlen, in 
ControlX1 = URL einen Link zu einer Website von einer App zu geben, welche das gekapselte 
Datenformat verarbeiten kann oder alternativ den Namen einer App, falls ein Link nicht verfügbar 
ist. 

DTI_FTLightWrap`FTL(n)`FTL(URL/App)`...`ControlXn-1`FTL_FTLightWrap(Binärdaten) 

Die Anzahl der Steuerfelder ist spezifisch für das jeweilige Format. Falls nach dem 
DTI_FTLightWrap-Datentyp keine Steuerfelder folgen (kein Back-Apostroph nach dem 
Typidentifikator) dann wird von einem kompletten FTLight-Archiv ausgegangen.. 

DTI_MCL-Datentyp 
Der dem MCL-Datentyp von den Eigenschaften her ähnliche FTL-Datentyp erfordert für das 
Berechnen der aufeinanderfolgenden FTL-Zeichen mehrere arithmetische Operationen. Abhängig 
vom Prozessor kann dies zu einem beträchtlichen Zeitbedarf für das Erzeugen des FTL-
Datenstromes führen. Daher ist es für extreme Laufzeitanforderungen erforderlich eine solche 
Kodierung zu verwenden, welche ausschließlich durch das Verschieben von Bits und unter 
Verwendung von Lookup-Tabellen auskommt, ohne dabei aufwendige arithmetische Operationen 
wie Multiplikation oder Division durchführen zu müssen. Dieses Format kann vorteilhaft auf ARM-
Architekturen wie zum Beispiel Microcontrollern oder auf Computern mit einer geringen Taktrate 
zur Anwendung kommen, wo dennoch ein hoher Durchsatz erzielt werden soll. Es eignet sich 
jedoch ebenso für schnelle Rechner, wenn extreme Anforderungen bezüglich der zu erreichenden 
Datenrate erfüllt werden sollen. 

Eine solche Kodierung, welche die beschriebenen Anforderungen erfüllt, wurde von Marko Cebokli 
als ein 15/16-Format entwickelt. Es arbeitet auf der Basis von 30-Byte-Feldern oder besser 15 
Feldern mit jeweils 16 Bit. Zunächst wird das höchstwertige Bit (MSB) eines jeden Datenwortes 
schrittweise in ein 16-Bit-Register eingeschoben. Anschließend erfolgt das Nachschlagen in einer 
vorausberechneten Tabelle basierend auf dem jeweiligen 16-Bit-Wert ohne das höchstwertige Bit 
als 15-Bit-Indexwert. Diese Tabelle wurde zuvor mit den zugeordneten FTLight-Zeichen für die 
insgesamt 32768 15-Bit-Werte gefüllt. Im letzten Schritt wird das Register, welches alle MSB derart 
aufgenommen hat, dass das MSB des letzten 16-Bit-Wertes an der niederwertigsten Position (LSB) 
ist, ebenfalls als 15-Bit-Wert in der vorausberechneten Tabelle nachgeschlagen. 

Die Implementierung eines 15/16-Algorithmus ergibt eine Effizienz der Kodierung von  93.8% im 
Vergleich zu den 96.9% eines 31/32-Algorithmus wie FTL. Der Vorteil eines 15/16-Algorithmus bei 
Implementierung mit einer Lookup-Tabelle besteht jedoch zum Beispiel in einem Bedarf von nur 42 
Prozessortakten pro Byte auf einem Pentium 4 Prozessor während ein 31/32-Algorithmus beim 
gleichen Prozessor 135 Takte pro Byte benötigt, wodurch der 15/16-Algorithmus auf dem 
genannten Prozessor dreimal so schnell als wie der 31/32-Algorithmus abläuft. Diese Relationen 
werden sich jedoch mit fortschreitender Prozessortechnik ändern und müssen dann neu bewertet 
werden, um das effektivste Verfahren für einen Anwendungsfall auszuwählen. 

Das Layout von DTI_MCL ist ähnlich dem vom DTI_FTL-Datentyp: 

DTI_MCL`FTL(n)`FTL(Dimension_1)`…` FTL(Dimension_n-1)`DTI_MCL(Binärdaten) 

Als Beispiel wird ein Array mit zwei Kanälen eines Ein-Bit-Interferometers, welches Daten von 
zwei gleichartigen Geräten enthält folgendermaßen aussehen: 

DTI_MCL`FTL(4)`FTL(1)`FTL(2)`FTL(2)`DTI_MCL(Binärdaten) 



Ein Messpunkt besteht aus insgesamt vier Bit, wobei zwei Bit das I- und Q-Signal des ersten 
Gerätes und zwei weitere Bit das I- und Q-Signal des zweiten Gerätes darstellen. 

Es wird offensichtlich, dass in diesem Fall sogar jedes einzelne Bit seine eigene Adresse bekommen 
hat und unter dieser dann auch eindeutig angesprochen werden kann. Dies ist in den Fällen von 
Bedeutung, wenn Datenströme von verteilten Beobachtungsstationen zu einem Korrelator-Standort 
übertragen und dort kombiniert (korreliert) werden sollen. 

DTI_FTL-Datentyp 
Der DTI_FTL-Datentyp entspricht dem FTL-Format soweit keine Steuerfelder vorhanden sind. Bei 
Vorhandensein von mehr als einem Steuerfeld stellen diese die Dimensionen eines Arrays von Bit-
Feldern dar. Das erste Steuerfeld gibt die Anzahl der Dimensionen des Arrays an: 

DTI_FTL`FTL(n)`FTL(Dimension_1)`…` FTL(Dimension_n-1)`FTL(Binärdaten) 

Als Beispiel wird ein Array mit 12-Bit-Messwerten von einem 100-Kanal-Spektrometer 
folgendermaßen aussehen: 

DTI_FTL`FTL(3)`FTL(12)` FTL(100)`FTL(Binärdaten) 

Das vorliegende Binärfeld wird als dreidimensionales Bit-Feld interpretiert, wobei die ersten beiden 
Dimensionen auf 12 Bit für jeden einzelnen Messwert sowie auf 100 Werte pro Messwertzeile 
gesetzt werden. Die Größe der dritten Dimension, welche die Anzahl der Messwertzeilen bzw. die 
Anzahl von Frequenzdurchläufen darstellt, folgt aus der Größe des Binärfeldes. 

DTI_TXL-Datentyp 
Der DTI_TXL-Datentyp gestattet das Speichern von n-dimensionalen Arrays von null-terminierten  
W-Bit Zeichenketten, z.B. 16-Bit Unicode-Strings.  

DTI_TXL`FTL(n)`FTL(W)`FTL(Dimension_1)`…` FTL(Dimension_n-1)`FTL(Sequenz von 
Zeichenketten) 

Zum Beispiel wird ein Array von Übersetzungen von einer ersten Sprache in eine zweite und eine 
dritte Sprache mit 8-Bit Zeichenrepräsentation folgendermaßen gespeichert werden: 

DTI_TXL`FTL(3)`FTL(8)`FTL(3)`FTL(Term11 Term12 Term13 … TermN1 TermN2 TermN3) 

Jedem Term wird ein Null-Zeichen (ASCII-Wert 0x00, Unicode-Wert 0x0000) hinzugefügt, 
welches das Ende einer null-terminierten Zeichenkette anzeigt. Jeder Term in einem Tripel von 
Zeichenketten hat dabei die gleiche Bedeutung, jedoch in unterschiedlichen Sprachen. 

DTI_DIF-Datentyp 
Der DTI_DIF-Datentyp kann ebenso wie DTI_MCL die Laufzeit der Datenkodierung gegenüber 
dem FTL-Datenformat auf einigen Rechnerarchitekturen verbessern. Weiterhin sorgt es durch die 
Verwendung der Differenzen von bis zu 64-Bit breiten aufeinanderfolgenden Integer-Werten neben 
einem geringstmöglichen Aufwand beim Kodieren und Dekodieren von Datenströmen ebenso für 
eine mögliche Datenkompression bei Werten mit geringer Schwankungsbreite. Deshalb eignet sich 
das DTI_DIF-Datenformat insbesondere für die Übertragung und Speicherung von Messdaten von 
Rechnern mit geringer Taktrate, wie bei vielen Microcontrollern anzutreffen, sowie bei fehlendem 
mathematischen Koprozessor. 

Beim Erzeugen eines DTI_DIF-Wertes werden die insgesamt 216 Symbole des FTL-Datentyps 
durch Addition von 100 zur Differenz zum vorhergehenden Wert folgendermaßen zugeordnet: 



	 0	 – Differenz -100 
	 1	 – Differenz -99 
	 ... 
	 99	 – Differenz -1 
	 100	 – Differenz 0 
	 101	 – Differenz +1 
	 ... 
	 199	 – Differenz +99 
	 200	 – Differenz +100  
	 201	 – folgendes Symbol als absoluter Wert 
	 202	 – folgende 2 Symbole als absoluter Wert, niederwertiges Symbol zuerst 
	 ... 
	 209	 – folgende 9 Symbole als absoluter Wert, niederwertiges Symbol zuerst 
	 210	 – kein Wert (leere Position im Datenstrom) 
	 211	 – gleiche Differenz wie zuvor für die folgenden 2 Werte 
	 ... 
	 214	 – gleiche Differenz wie zuvor für die folgenden 5 Werte 
	 215	 – Beginn von jeweils 2 verschränkten Messwerten mit niedriger Schwankungsbreite 

Bei den Kombinationen 201 bis 209 wird aus den sich anschließenden 1 bis 9 Symbolen zunächst 
ein  vorzeichenloser Integer-Wert berechnet, bei aufsteigender Wertigkeit der Symbole: 

	 WertPositiv = (...(Symbol_9 * 216 + Symbol_8) * 216 + … ) * 216 + Symbol_1 

Anschließend wird der maximale Bereich für den Positivwert ermittelt: 

	 BereichPositiv = 216 ^ (Symbol_0 – 200) 

Der  endgültige Wert ergibt sich aus dem Vergleich von WertPositiv mit BereichPositiv: 

	 1) WertPositiv < BereichPositiv / 2 : Wert = WertPositiv 

	 2) WertPositiv >= BereichPositiv / 2 : Wert = WertPositiv -  BereichPositiv 

Das Symbol 210 dient zum Kennzeichnen einer leeren Position in einem Datenstrom und mit den 
Symbolen 211 bis 214 wird eine mehrfache Wiederholung der vorherigen Differenz angezeigt.  

Das Symbol 215 leitet bei Messwertfolgen mit besonders geringen Schwankungen vorrangig in den 
niederwertigen 4 Bits einen Bereich mit jeweils 2 verschränkten Messwerten ein, welche maximal 
32-Bit breit sein können. Dieser Bereich wird beendet sobald bei einer Differenz von über 100 ein 
(verschränkter) Absolutwert eingefügt werden muss.  

Ein verschränkter Messwert wird durch Verschieben der Bits mit einer Lücke von jeweils einem Bit 
erhalten. Die Bits eines zweiten Messwertes mit gleichen Bit-Lücken werden nach einer weiteren 
Verschiebung um ein Bit in die Lücken des ersten Wertes eingepasst und  es entsteht dadurch aus 
zwei einzelnen Messwerten mit bis zu 32-Bit Breite ein verschränkter 64-Bit-Wert: 

Wert 1: Bits in geraden Positionen:	 	 62 – 60 - … - 14 – 12 – 10 – 8 – 6 – 4 – 2 – 0   
Wert 2: Bits in ungeraden Positionen:	 63 – 61 - … - 15 – 13 – 11 – 9 – 7 – 5 – 3 – 1 

Ein Vorteil im Datenvolumen entsteht dadurch, dass bei Schwankungen der verschränkten 
Messwerte bis zu einem Wert von maximal 100 zwei Werte nur ein Byte zum Speichern benötigen. 

Falls Messwertschwankungen bei maximal 16-Bit breiten Messwerten nur die niederwertigen 1 
oder 2 Bit verändern dann können statt 2 Messwerten alternativ auch 4 Messwerte verschränkt 



werden. Dieser Modus wird durch 2 aufeinanderfolgende Symbole 215 eingeleitet und ebenfalls 
durch einen (verschränkten) Absolutwert beendet.  

Wert 1: Bits in 0-Positionen:	 	 	 60 – 56 - … - 28 – 24 – 20 – 16 – 12 – 8 – 4 – 0   
Wert 2: Bits in 1-Positionen:	 	 	 61 – 57 - … - 29 – 25 – 21 – 17 – 13 – 9 – 5 – 1 
Wert 3: Bits in 2-Positionen:	 	 	 62 – 58 - … - 30 – 26 – 22 – 18 – 14 – 10 – 6 – 2   
Wert 4: Bits in 3-Positionen:	 	 	 63 – 59 - … - 31 – 27 – 23 – 19 – 15 – 11 – 7 – 3 

Eine Verschränkung kann auch bei 8 maximal 8-Bit breiten Messwerten angewendet werden. Dies 
kann zum Beispiel bei 8-Bit breiten Bilddatenströmen mit ausgedehnten Bereichen  mit nur 1-Bit 
Schwankungen oder ohne Schwankungen eine weitere Reduktion des Datenvolumens bewirken. 
Dieser Modus wird durch 3 aufeinanderfolgende Symbole 215 eingeleitet und ebenso wie bei den 
anderen Varianten durch einen (verschränkten) Absolutwert beendet.  

Wert 1: Bits in 0-Positionen:	 	 	 56 – 48 – 40 – 32 – 24 – 16 – 8 – 0   
Wert 2: Bits in 1-Positionen:	 	 	 57 – 49 – 41 – 33 – 25 – 17 – 9 – 1 
Wert 3: Bits in 2-Positionen:	 	 	 58 – 50 – 42 – 34 – 26 – 18 – 10 – 2   
Wert 4: Bits in 3-Positionen:	 	 	 59 – 51 – 43 – 35 – 27 – 19 – 11 – 3 
Wert 5: Bits in 4-Positionen:	 	 	 60 – 52 – 44 – 36 – 28 – 20 – 12 – 4   
Wert 6: Bits in 5-Positionen:	 	 	 61 – 53 – 45 – 37 – 29 – 21 – 13 – 5 
Wert 7: Bits in 6-Positionen:	 	 	 62 – 54 – 46 – 38 – 30 – 22 – 14 – 6   
Wert 8: Bits in 7-Positionen:	 	 	 63 – 55 – 47 – 39 – 31 – 23 – 15 – 7 

Beim Übertragen und Speichern von DTI_DIF-kodierten Daten belegt jedes Symbol ein Byte nach 
Wandlung des Symbols gemäß der für FTL festgelegten Zuordnung von Symbolen in Zeichen des 
erweiterten ASCII-Zeichensatzes. Die ersten Symbole stellen einen absoluten Anfangswert dar, 
gefolgt von Differenzwerten.  

Sobald die Differenz zwischen zwei aufeinanderfolgenden Werten größer als 100 ist, muss statt der 
Differenz wieder ein Absolutwert eingefügt werden. Nach einer bestimmten Anzahl von 
Differenzwerten sollte zum Neustart nach Datenkorruption zur Verbesserung der Robustheit und 
Fehlertoleranz ebenfalls wieder ein Absolutwert eingefügt werden. Wenn dies nach zum Beispiel 31 
Differenzwerten erfolgt dann ist für 8-Bit Werte die FTL Effizienz der Datencodierung erreichbar.  

Das Layout von DTI_DIF ist ähnlich dem vom DTI_FTL-Datentyp: 

DTI_DIF`FTL(n)`FTL(Dimension_1)`…` FTL(Dimension_n-1)`DTI_DIF(Binärdaten) 

Im Unterschied zum DTI_FTL-Datentyp gibt es keine Festlegung für die Bitbreite eines 
Messwertes, weil diese bedingt durch das angewendete Differenzverfahren dynamisch zwischen 8 
und 64 Bit schwanken kann. Die erste Dimension 'Dimension_1' bezieht sich daher bereits auf einen 
vollständigen Wert mit einer potenziell dynamischen Bitbreite. 

Als Beispiel wird ein dreidimensionales Array von zwei Messgeräten mit jeweils drei Kanälen 
folgendermaßen aussehen: 

DTI_DIF`FTL(3)`FTL(2)`FTL(3)`DTI_DIF(Binärdaten) 

Es ist zu beachten, dass das zuvor beschriebene Differenzverfahren auf jeden Kanal jedes 
Messgerätes separat angewendet wird. Die dritte Dimension ergibt sich aus der Anzahl der 
DTI_DIF kodierten Daten wobei jeweils 6 Messwerte einen Datensatz bilden (2 Messgeräte mit 
jeweils 3 Kanälen). 



DTI_UNIT-Datentyp 
Der DTI_UNIT-Datentyp ermöglicht die Darstellung eines Bruchteils oder eines Vielfachen einer 
Einheitsgröße sowie auch beliebige Verhältnisse von beiden, z.B. als Basiswert für Messwertdaten. 
Negative Werte und Exponenten werden durch doppeltes Back-Apostroph (``) gekennzeichnet. 
DTI_UNIT`FTL(Wert) 
DTI_UNIT`FTL(1)`FTL(Wert) 
DTI_UNIT`FTL(2)``FTL(Negativwert) 
DTI_UNIT`FTL(2)`FTL(Einheit)`FTL(Wert) 
DTI_UNIT`FTL(3)`FTL(Einheit)``FTL(Negativwert) 
DTI_UNIT`FTL(3)`FTL(Einheit)`FTL(Faktor)`FTL(Wert) 
DTI_UNIT`FTL(4)`FTL(Einheit)`FTL(Faktor)``FTL(Negativwert) 
DTI_UNIT`FTL(4)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)`FTL(Wert) 
DTI_UNIT`FTL(5)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)``FTL(Negativwert) 
DTI_UNIT`FTL(5)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)`FTL(Exponent)`FTL(Wert) 
DTI_UNIT`FTL(6)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)`FTL(Exponent)``FTL(Negativwert) 
DTI_UNIT`FTL(6)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)``FTL(Negativexponent)`FTL(Wert) 
DTI_UNIT`FTL(7)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)``FTL(Negativexponent)``FTL(Negativwert) 
DTI_UNIT`FTL(6)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)`FTL(Basis)`FTL(Exponent)`FTL(Wert) 
DTI_UNIT`FTL(7)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)`FTL(Basis)`FTL(Exponent)``FTL(negativer Wert) 
DTI_UNIT`FTL(7)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)`FTL(Basis)``FTL(Negativer Exponent)`FTL(Wert) 
DTI_UNIT`FTL(8)`FTL(Einheit)`FTL(Faktor)`FTL(Teiler)`FTL(Basis)``FTL(Negativer Exponent)``FTL(n. Wert) 

Ein relativer Wert, ausgedrückt als Integer-Zahl, kann neben einer physikalischen Einheit zusätzlich 
um einen Faktor, einen Teiler, eine Basis und einen Exponenten ergänzt werden, um den 
endgültigen physikalischen Wert darzustellen. Zum Beispiel wird ein relativer Wert von 1, der einen 
Wert von 1E-26 darstellt, wie folgt kodiert: 

DTI_UNIT`FTL(6)`FTL(0)`FTL(1)`FTL(1)``FTL(26)`FTL(1) 

Die im Beispiel verwendete Einheit von '0', kodiert als FTL(0), bedeutet eine relative Zahl ohne  
physikalische Einheit. Eine physikalische Messgröße muss stattdessen eine Einheit ungleich '0' 
erhaltenen, welche nach folgender Zuordnung als SI-Einheit oder als eine davon abgeleitete Einheit 
kodiert wird:  

	 0	 (ohne Einheit)		 	 	 -	 	 [-] 
	 1	 Zeit 	 	 	 	 	 Sekunde	 [s] 
	 2	 Länge	 	 	 	 	 Meter	 	 [m] 
	 3	 Masse 		 	 	 	 Kilogramm	 [kg] 
	 4	 Stromstärke	 	 	 	 Ampere	 [A] 
	 5	 thermodynamische Temperatur	 Kelvin		 [K] 
	 6	 Stoffmenge	 	 	 	 Mol	 	 [mol] 
	 7	 Lichtstärke	 	 	 	 Candela	 [cd] 
	 8	 ebener Winkel		 	 	 Radiant	 [rad] 
	 9	 Raumwinkel	 	 	 	 Steradiant	 [sr] 
	 10	 Frequenz	 	 	 	 Hertz	 	 [Hz] 
	 11	 Kraft	 	 	 	 	 Newton	 [N] 
	 12	 Druck	 	 	 	 	 Pascal	 	 [Pa] 
	 13	 Energie, Arbeit, Wärmemenge	 Joule	 	 [J] 
	 14	 Leistung	 	 	 	 Watt	 	 [W] 
	 15	 elektrische Ladung	 	 	 Coulomb	 [C] 
	 16	 elektrische Spannung	 	 	 Volt	 	 [V] 
	 17	 elektrische Kapazität	 	 	 Farad	 	 [F] 
	 18	 elektrischer Widerstand	 	 Ohm	 	 [Ω] 
	 19	 elektrischer Leitwert	 	 	 Siemens	 [S] 



	 20	 magnetischer Fluss	 	 	 Weber	 	 [Wb] 
	 21	 magnetische Flussdichte	 	 Tesla	 	 [T] 
	 22	 Induktivität	 	 	 	 Henry	 	 [H] 
	 23	 Celsius Temperatur	 	 	 Grad Celsius	 [°C] 
	 24	 Lichtstrom	 	 	 	 Lumen		 [lm] 
	 25	 Beleuchtungsstärke	 	 	 Lux	 	 [lx] 
	 26	 Radioaktivität	 	 	 	 Becquerel	 [Bq] 
	 27	 Energiedosis	 	 	 	 Gray	 	 [Gy] 
	 28	 Äquivalentdosis	 	 	 Sievert		 [Sv] 
	 29	 katalytische Aktivität	 	 	 Katal	 	 [kat] 
Eine Anwendung kann von diesen Zuordnungen abweichend auch andere Binärdaten beliebiger 
Größe für das Kodieren einer physikalischen Einheit verwenden, welche jedoch nicht mit den 
bereits festgelegten Werten kollidieren dürfen. 

DTI_TIME-Datentyp 
Der DTI_TIME-Datentyp erlaubt einen Bruchteil oder ein Vielfaches einer Sekunde und auch jede 
Kombination von beiden als Zeitbasis festzulegen. Eine negative Zeit (Vergangenheit vor 1970) 
wird durch ein doppeltes Back-Apostroph (96) vor der Zeitangabe ``FTL(Zeit) gekennzeichnet. 
DTI_TIME`FTL(Zeit) 
DTI_TIME`FTL(1)`FTL(Zeit) 
DTI_TIME`FTL(2)``FTL(Zeit vor 1970) 
DTI_TIME`FTL(2)`FTL(Faktor)`FTL(Zeit) 
DTI_TIME`FTL(3)`FTL(Faktor)``FTL(Zeit vor 1970) 
DTI_TIME`FTL(3)`FTL(Faktor)`FTL(Teiler)`FTL(Zeit) 
DTI_TIME`FTL(4)`FTL(Faktor)`FTL(Teiler)``FTL(Zeit vor 1970) 
DTI_TIME`FTL(4)`FTL(Faktor)`FTL(Teiler)`FTL(Exponent)`FTL(Zeit) 
DTI_TIME`FTL(5)`FTL(Faktor)`FTL(Teiler)`FTL(Exponent)``FTL(Zeit vor 1970) 
DTI_TIME`FTL(5)`FTL(Faktor)`FTL(Teiler)``FTL(Negativexponent)`FTL(Zeit) 
DTI_TIME`FTL(6)`FTL(Faktor)`FTL(Teiler)``FTL(Negativexponent)``FTL(Zeit vor 1970) 
DTI_TIME`FTL(5)`FTL(Faktor)`FTL(Teiler)`FTL(Basis)`FTL(Exponent)`FTL(Zeit) 
DTI_TIME`FTL(6)`FTL(Faktor)`FTL(Teiler)`FTL(Basis)`FTL(Exponent)``FTL(Zeit vor 1970) 
DTI_TIME`FTL(6)`FTL(Faktor)`FTL(Teiler)`FTL(Basis)``FTL(Negativexponent)`FTL(Zeit) 
DTI_TIME`FTL(7)`FTL(Faktor)`FTL(Teiler)`FTL(Basis)``FTL(Negativexponent)``FTL(Zeit vor 1970) 

Alle Zeitangaben beziehen sich auf den 1.Januar 1970. Der Zeitschritt, welcher benötigt wird um 
von  dieser Bezugszeit zu einem beliebigen Zeitpunkt zu gelangen wird entsprechend den zuvor für 
die Zahlendarstellung festgelegten Regeln angegeben. Zum Beispiel wird ein Millisekunden-
Zeitschritt für positive und negative Zeiten (vor 1970) wie folgt kodiert: 

DTI_TIME`FTL(3)`FTL(1)`FTL(1000)`FTL(Zeit) → Zeitangabe ab 1970-01-01 00:00:00 UTC 
DTI_TIME`FTL(4)`FTL(1)`FTL(1000)``FTL(Zeit)   → Zeitangabe vor 1970 

DTI_TOKEN-Datentyp 
Der DTI_TOKEN-Datentyp überträgt ein Kommando für den Aufbau, den Abbau und die 
Verwaltung von „CmServiceConnection“ im Cosmos-Programmsystem. Es kommen keine 
Typsteuerfelder zur Anwendungen. Stattdessen wird der Definitionswert eines Kommandos als 
FTL-Wert direkt im Anschluss an den DTI_TOKEN-Datentyp übertragen:  

DTI_TOKEN(Kommando) 



DTI_LINK-Datentyp 
Mit dem DTI_LINK-Datentyp werden Adressen (Funktionszeiger) von lokal erreichbaren Modulen 
übertragen. Es kommen keine Typsteuerfelder zur Anwendung. Stattdessen wird die Adresse direkt 
nach dem DTI_LINK-Datentyp als FTL-Datenfeld übertragen: 

DTI_LINK(Adresse) 

Der FTL-Identifikator-Datentyp (IFTL) 
Ein FTL-Identifikator (IFTL) wird als Zeichenkette definiert, welche genau ein @-Zeichen enthält 
und ansonsten nur solche Zeichen, die auch ein gültiges FTL-Symbol repräsentieren können. 
Insbesondere darf ein Identifikator daher keine Zeichen aus dem Bereich 0..31 und auch keine der 
für FTL festgelegten Sonderzeichen enthalten. 

Die Struktur eines Identifikators besteht somit aus einem Prefix und einem Suffix, welche durch das 
@-Zeichen miteinander verbunden sind. Sowohl Prefix als auch Suffix stellen in sich einen FTL-
kodierten Wert dar, welcher sich bei Bedarf in jeweils einen Binärwert konvertieren und in dieser 
Form evaluieren lässt.  

Sobald ein Identifikator als erstes Element einer Zeile in einem FTLight File/Stream erscheint so 
wird er zur Root (oberstes Verzeichnis) für alle nachfolgenden Informationen. Ein Identifikator 
stellt somit die höchste Ebene in allen Informationshierarchien dar. 

Die Aufgabe eines Identifikators ist es, alle FTLight-Informationen eindeutig zu machen. Dieser 
Anspruch bedeutet, dass die Existenz eines doppelten Identifikators sehr unwahrscheinlich ist und 
dass dies für alle Daten zutrifft, welche hier auf der Erde, als auch auf anderen Planeten unseres 
Sonnensystems, in anderen Sonnensystemen oder in anderen Galaxien unseres Universums oder 
auch außerhalb unseres Universums ihren Entstehungsort haben. 

Diese Spezifikation kann nur einen Vorschlag machen, wie das Problem eines eindeutigen FTLight-
Identifikators gelöst werden kann. Sie ist daher als Empfehlung zu sehen, wie eindeutige 
Identifikatoren z.B. für das erdgebundene Sammeln von radioastronomischen Daten gebildet 
werden können. Der folgende Merksatz soll dabei als Wegweiser für das Generieren dienen: 

            “Eine Person A geboren in B sammelt Daten in C zum Thema D” 

Die vorgeschlagene Regel benutzt zum Beispiel die Anfangsbuchstaben der Komponenten A und B 
in Großbuchstaben. Die Komponente C enthält eine für das globale Gradnetz geltende Locator-
Bezeichnung wie sie bei Funkamateuren üblich ist und erweitert diese durch eine lokale 
Ortsbezeichnung. Die Komponente D enthält eine geeignete Kurzform für das Thema. Die 
einzelnen Elemente werden anschließend nach folgendem Schema zusammengefügt: 

            AB@C.D 

Beispiel: 

     Der Identifikator  

	 “EKD@UnCmSunEar_JO63rx_Dambeck.RSpectro”  

     besteht aus folgenden Komponenten: 

• E                     	 - Eckhard (Vorname)  
• K                     	 - Kantz (Nachname)  
• D                     	 - Dambeck (Geburtsort)  
• @                    	 - Kennzeichen für einen Identifikator  
• Un	 	 - Standort: Universum 'Un' 



• Cm	 	 - Standort: Kosmischer Sektor 'Cm' 
• Sun	 	 - Standort: Sonnensystem 'Sun' 
• Ear	 	 - Standort: Planet 'Erde' 
• _		 	 - Separator innerhalb der Standortbezeichnung 
• JO63rx	 	 - Standort: Locator 
• _		 	 - Separator innerhalb der Standortbezeichnung 
• Dambeck	 - Standort: lokale Ortsbezeichnung 
• .                      	 - Separator zwischen Ort und Thema  
• RSpectro        	 - Kurzform für “Radio Frequency Spectrometer” (Gerät als Thema)  

Die Kombination von Universum, kosmischem Sektor, Sonnensystem und Planet zielt dabei auf 
Eindeutigkeit auf allen Ebenen. Falls diese Kombination fehlt, dann wird „UnCmSunEar“ als Wert 
angenommen. Für die Planeten unseres Sonnensystems werden folgende Bezeichner verwendet: 

UnCmSun	 	 - Sonnensystem (Weltraummission außerhalb von Planeten) 
UnCmSunMer	 - Merkur 
UnCmSunVen		 - Venus 
UnCmSunEar		 - Erde 
UnCmSunMar	 - Mars 
UnCmSunPax		 - Pax (nur als Bruchstücke im Asteroidengürtel, zu rekonstruieren) 
UnCmSunJup		 - Jupiter	  
UnCmSunSat	 	 - Saturn 
UnCmSunUra		 - Uranus 
UnCmSunNep		 - Neptun 
UnCmSunPlu		 - Pluto 

Für den Bezeichner unseres kosmischen Sektors muss zukünftig gegebenenfalls eine weitere 
Strukturierung vorgenommen werden, ebenso für Orte auf Monden von einem Planeten. 

Alternativ zu Zeichenketten können auch digitale Signaturen (nach entsprechender FTL-Kodierung) 
zu einem Bestandteil eines Identifikators werden. Sie erscheinen dann anstelle der Komponente AB 
und bezeichnen den Operator.  

Adressierung von Gruppen mit gleichem Identifikator 

Der IFTL Identifikator kann neben der eindeutigen Adressierung von gespeicherten statischen 
Informationen insbesondere auch für die Kommunikation von Systemen eingesetzt werden, so wie 
unter „Anfragen, Abonnieren und Schreiben von aktuellen Daten“ beschrieben. Dabei kann die 
Vergabe von Identifikatoren sowohl individuell mit einem Identifikator pro System, als auch für 
eine Gruppe von meist gleichartigen Systemen erfolgen. In diesem Fall werden Anfragen an einen 
Identifikator als Gruppenanfragen wirksam, welche von ein oder mehreren Systemen gleichzeitig 
beantwortet werden können. Die individuelle Zuordnung einer Antwort zu einem System erfolgt bei 
Gruppenanfragen durch Auswertung der erhaltenen Informationen. 

Beim Schreiben von Daten und Kommandos auf Gruppen-Identifikatoren wird die Information 
parallel auf alle adressierten Systeme übertragen. Die Systeme speichern die erhaltenen Daten und 
führen erhaltene Kommandos in der Regel unabhängig voneinander gleichzeitig und parallel aus. 



Adressdatentyp 
Die Aufgabe einer Adressangabe ist es, das Duplizieren von Informationen innerhalb eines FTLight 
Files/Streams durch das Referenzieren von bereits vorhandenen Informationen zu vermeiden. Der 
Wirkungsbereich einer Adressangabe ist dabei auf den FTLight File/Stream begrenzt, wo sie selber 
darin enthalten ist. 

Theoretisch wäre es möglich auch Elemente in anderen FTLight Files/Streams zu referenzieren, 
weil die Informationen durch die verwendeten Identifikatoren auf der obersten Ebene eindeutig 
gemacht wurden. Trotz dieser Möglichkeit sollte kein Gebrauch davon gemacht werden, weil man 
sich dann auf eine fest verdrahtete Informationsstruktur verlassen würde. 

Wenn man die Historie einer bereits jahrzehntelangen Repräsentation von Informationen in 
Datenstrukturen betrachtet so wird deutlich, dass jede Datenstruktur nach einiger Zeit veraltet und 
für die sich ändernden Anforderungen angepasst, erweitert oder auch vollständig neu definiert 
werden muss. Daher führt eine Fortsetzung von fest verdrahteten Datendefinitionen zu relativ 
kurzlebigen Datenstrukturen . 

Im Gegensatz dazu besteht das Ziel der FTLight-Spezifikation in langlebigen Datenstrukturen, 
welche mit Leichtigkeit angepasst, erweitert oder sogar teilweise neu definiert werden können, ohne 
dabei die Verbindung zu vorher definierten Datenstrukturen abreißen zu lassen.Jedoch verlangt 
diese Zielstellung das Verwenden von vollständigen Pfadinformationen anstelle von internen 
Adressen beim Referenzieren von externen Daten. 

Adressdarstellung 
Eine Adresse wird durch Integer-Zahlen dargestellt, die durch ein “-“ (Minuszeichen) miteinander 
verbunden sind, wobei die Folge der Integer-Zahlen die Position des entsprechenden Elementes in 
der Informationshierarchie innerhalb eines Files/Stream angibt. Adressen repräsentieren somit Links 
zu anderen Elementen, zu denen sie jeweils zeigen. 

Beispiel: 

            0-0-1-0 

Eine Adresse kann zum Beispiel als erstes Element in einer Zeile verwendet werden, falls dieses auf 
ein übergeordnetes Element verweisen soll, welches durch keine implizite FTLight-Regel erreicht 
werden kann. 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,1073217600:FTLight,2004-01-12 
,Antenne,Parabolspiegel 90cm 

ist gleichbedeutend mit 
EKD@JO63rx_Dambeck.RSpectro,1073217600 
,Antenne,Parabolspiegel 90cm 
0-0:FTLight,2004-01-12 

und bezieht sich in beiden Fällen auf die folgende Struktur: 
0          EKD@JO63rx_Dambeck.RSpectro 
0-0            1073217600 
0-0-0               FTLight 
0-0-1               2004-01-12 
0-1            Antenne 
0-1-0               Parabolspiegel 90cm 



Umgang mit Änderungen 
Adressen können von besonderem Vorteil sein, wenn vorhandene Strukturen geändert werden 
müssen ohne dass Programme, welche sich auf die alten Strukturen verlassen in Mitleidenschaft 
gezogen werden sollen, wie z.B.: 

Altes Format: 
      Frequenz:GHz,10.600 

Neues Format: 
      Frequenz:GHz,10.600,Start,Schritt,Ende,Standard 
      0-2,10.500 
      0-3,0.00025 
      0-4,12.750 
      0-5,0-1 

Die Struktur des neuen Formates würde folgendermaßen aussehen: 
0	   Frequenz 
0-0	 	 GHz 
0-1	 	 10.600 
0-2	 	 Start 
0-2-0		    10.500 
0-3	 	 Schritt 
0-3-0		    0.00025 
0-4	 	 Ende 
0-4-0		    12.750 
0-5	 	 Standard 
0-5-0		    10.600                    

Der letzte Wert (0-5-0) wäre der gleiche Wert wie (0-1) weil ein Link darauf verweist. Dies gestattet 
es mit der alten Struktur kompatibel zu bleiben, welche die Frequenz auf der Position (0-1) hatte. 
Alle Anwendungen, welche die Frequenz auf dieser Position erwarten, werden mit der neuen 
Datenstruktur auch weiterhin funktionsfähig bleiben. Zusätzlich können neue Anwendungen 
vorteilhaft die erweiterten Daten verwenden, welche neben der Frequenz auch eine 
Anfangsfrequenz, einen Frequenzschritt sowie eine Endfrequenz bereitstellen. 

Somit zeigt das vorherige Beispiel eine zweite Methode für das Erzielen von Kompatibilität 
zwischen den Datenstrukturen, wobei die Definition der neuen Datenstruktur dafür sorgt, dass die 
Verbindung zu existierenden Anwendungen nicht unterbrochen wird. Zusammen mit der zuvor 
beschriebenen Verwendung von kompletten Pfadnamen für das Referenzieren von externen Daten, 
wo immer dies möglich ist, ergibt dies eine praktische Lösung für das Ändern von Datenstrukturen. 
Diese können nun über sehr lange Zeiträume und über mehrere Generationen von 
Anwendungsprogrammen angepasst, erweitert oder teilweise neu definiert werden, wann immer 
neue Anforderungen dies notwendig machen. 

Die Möglichkeit zum Anpassen, Erweitern und teilweise neu Definieren von Datenstrukturen wird 
in der Radioastronomie, insbesondere wegen der sehr langen Zeiträume von Datenaufzeichnungen,  
für extrem wichtig erachtet. Eine Datenbank mit detaillierten Geschäftsdaten einer Firma wird nach 
einigen Jahrzehnten eventuell keinerlei Bedeutung mehr haben, weil es die Firma dann vielleicht 
schon lange nicht mehr gibt. Das Gegenteil ist bei radioastronomischen Daten der Fall. Das 
Vorhandensein von Jahrzehnte alten Daten von Radioquellen kann eine Schlüsselrolle spielen, wenn 
es um das Aufstellen von dynamischen Modellen der Radioquelle geht. Daher müssen die Daten 
über sehr lange Zeit in lesbarer Form erhalten bleiben. Die FTLight-Spezifikation ist diesem Ziel 
verpflichtet. 



Entropie-Modus (FPGA) 
Der Entropie-Modus optimiert das FTLight-Protokoll für die folgenden zwei Anwendungsfälle: 

• Nutzdatenübertragung mit hoher Geschwindigkeit bis nahezu 100% der Bandbreite 

• Implementierung mit einfacher Logik z.B. für FPGA 

In beiden Fällen  bleibt das Grundkonzept des FTLight-Protokolls bezüglich Unbeschränktheit 
sowohl bei der Größe von Informationselementen als auch bei der Tiefe der Informationshierarchie 
erhalten. Gegenüber anderen Modi gelten beim Entropie-Modus die folgenden Einschränkungen 
und Besonderheiten: 

• der Entropie-Modus gilt für eine ganze Zeile und kann nicht mit anderen Elementen vermischt 
werden 

• die Adressierung beginnt stets unterhalb des IFTL und es können daher nur Daten für diesen 
einen IFTL übertragen werden 

• es werden nur bereits existierende Knoten der Informationshierarchie bedient 

• es werden nur Knoten der jeweils untersten Ebene der Informationshierarchie adressiert sowie 
die Eltern-Knoten eines Ringpuffers auf unterster Ebene 

• in einem Ringpuffer wird nach einmaliger Adressierung des Eltern-Knotens fortlaufend in die 
aufeinander folgenden Speicherplätze beginnend bei der aktuellen Position geschrieben 

• falls die empfangenen Bits den letzten Speicherplatz nicht vollständig füllen, dann wird dieser 
mit „0“ aufgefüllt. 

• falls im Entropie-Modus am Ende keine Byte-Grenze erreicht wird, dann werden die 
verbleibenden Bits beim Senden mit „0“-Füllbits aufgefüllt und beim Empfang verworfen 

• wenn im Entropie-Modus Datenblöcke ohne Byte-Ausrichtung aufeinander folgen, dann 
können diese (gleichbedeutend) mit oder ohne „0“-Füllbits übertragen werden 

Übertragungsrahmen: 

Die Aktivierung des Entropie-Modus erfolgt durch ein gesetztes Bit („1“) am Anfang des 
Datenstroms. Bei allen anderen Modi ist das erste Bit stets rückgesetzt („0“).  

Die Anzahl der gesetzten Bits am Anfang eines Datenstroms vor dem ersten „0“-Bit stellen einen 
Exponent zur Basis 2 für die Längenfestlegung eines Übertragungsrahmens dar, z.B. 

„1110............“ 

legt einen Übertragungsrahmen mit Byte-Ausrichtung (8 Bit) fest. Im Abstand dieses Rahmens 
zeigt das jeweils erste Bit eine Fortsetzung des Entropie-Modus an, falls es auf „1“ gesetzt ist. 
Andernfalls wird bei „0“ ein letzter Rahmen im Entropie-Modus angezeigt, z.B. 

„1110xxxx1xxxxxxx0xxxxxxx“ 

überträgt mit einem Rahmen von 8 Bit insgesamt 3 Byte mit 18 Bit Nutzdaten. 

Falls die Gesamtlänge aller Rahmen nicht auf eine Byte-Grenze fällt, dann müssen vor dem 
Verlassen des Entropie-Modus die verbleibenden Bits auf 0 gesetzt werden, z.B. 

„100x“ oder „110x1xxx0xxx“ müssen mit jeweils vier „0“ Bits aufgefüllt werden zu: 

„100x0000“ bzw. „110x1xxx0xxx0000“ 



Das Auffüllen mit Nullbits kann optional entfallen, wenn sich ein weiterer Datenblock im Entropie-
Modus an einen Datenblock ohne Byte-Ausrichtung anschließt. 

Adressierung: 

Für die Adressierung auf jeder Ebene der Informationshierarchie werden N Bits verwendet. Die 
Anzahl N wird durch die Anzahl der 1-Bits beginnend beim ersten Bit der Nutzdaten nach den Bits 
zur Kennzeichnung der Rahmenlänge signalisiert. Diese Länge kann im speziellen Fall auch 0 sein. 
Es gibt keine Beschränkung zur maximalen Anzahl der Adressbits entsprechend dem Grundkonzept 
des FTLight-Protokolls zur Vermeidung von jeglichen Beschränkungen im Design. 

Die Adresse wird Ebene für Ebene aus jeweils N aufeinanderfolgenden Bits gebildet ohne einen 
weiteren Trenner zwischen den Adressen der verschiedenen Ebenen. Die Adressierung endet, sobald 
ein letztes Element in der Informationshierarchie erreicht ist. Es wird in keinem Fall ein neues 
Element erzeugt. Alle weiteren Bits stellen stattdessen die Information für das angewählte Element 
dar, beginnend beim höchstwertigen Bit. Wenn weniger Bits übertragen wurden als wie das Element 
erwartet, dann werden die niederwertigen Bits mit 0 aufgefüllt.  

Im Falle eines Ringpuffers gilt die Adresse des übergeordneten Elementes (Eltern-Element) als 
letztes zu adressierendes Element der Hierarchie. Die Information wird jedoch eine Ebene tiefer 
fortlaufend in die Speicherplätze des Ringpuffers eingetragen. 

Informationsbits: 

Die Anzahl der Informationsbits für das angewählte Element ist unbeschränkt. Je mehr Bits als 
Information übertragen werden, desto mehr nähert sich die Ausnutzung der Bandbreite dem 
theoretischen Maximum von 100% der zur Verfügung stehenden Bandbreite. 

Die Adressierung bei den nachfolgenden Beispielen beginnt in jedem Fall unterhalb des IFTL in der 
darunter liegenden Ebene. 

Das folgende Bitmuster ist ein Beispiel für ein Adressbit (10) „a“ und 8 Informationsbits „i“ bei 8-
Bit Übertragungsrahmen mit einer Effizienz von 50% (8 Bit Nutzdaten in 16 übertragenen Bits). 

„1110 10 a i    0 i i i i i i i“ 

Wenn z.B 4 Adressbits (11110) erforderlich sind dann finden bei einem 8-Bit Übertragungsrahmen 
in 4 Byte bis zu 16 Informationsbits Platz, was ebenfalls einer Effizienz von 50% entspricht: 

„1110 1111   10 a a a a i i   1 i i i i i i i    0 i i i i i i i" 

Wenn die Informationshierarchie unterhalb des IFTL einen Ringpuffer mit 8-Bit Speicherplätzen 
und ansonsten keine weiteren Elemente enthält, dann können z.B. 7 Byte Information in 8 Byte bei 
einer Rahmengröße von 32 Bit mit einer Effizienz von 87,5% übertragen werden: 

„111110 0 i    i i i i i i i i    i i i i i i i i    i i i i i i i    0 i i i i i i i    i i i i i i i    i i i i i i i i    i i i i i i i" 

Für eine weitere Erhöhung der Übertragungseffizienz muss die Größe der übertragenen Frames 
weiter erhöht werden. Wenn dabei wie im folgenden Beispiel 2046 Informationsbytes (16368 Bit) 
in 2048 Byte (16384 Bit) übertragen werden, dann erreicht die Effizienz bereits 99,9% der zur 
Verfügung stehenden Bandbreite: 

„11111111  111110 0 i    i i i i i i i i  ...  i i i i i i i    0 i i i i i i i    i i i i i i i   ...  i i i i i i i" 

Wenn zusätzlich einige Adressbits benötigt werden, dann tritt bei großen Frames nur ein geringes 
Absinken der Effizienz auf, wie das folgende Beispiel zeigt. Hier werden in 1024 Bit insgesamt 
1008 Informationsbits und zwei Adressbits übertragen, was einer Effizienz von 98,4% entspricht:  



„11111111  10 110 a a i    i i i i i i i i  ...  i i i i i i i    0 i i i i i i i    i i i i i i i   ...  i i i i i i i" 

Die fehlenden 16 Bits bis zu einer "geraden" Anzahl von 1024 Nutzbits können mit kleinem Frame 
von 8 Bit ergänzt werden, wobei sich eine durchschnittliche Effizienz von 97,0% ergibt: 

„1110 110 a   1 a i i i i i i    1 i i i i i i i   0 i i i 0 0 0 0" 

Framework- Funktionalität 
Obwohl der Zweck einer Datensammlung im Speichern von Nutzdaten besteht, so ist es dennoch 
nützlich, Zusatzinformationen für die Beschreibung des Inhalts der einzelnen Felder zur Verfügung 
zu haben. Derartige Daten werden Metadaten genannt. Weil eine FTLight-Datei ihrerseits jedoch 
bereits viele Metadaten enthält, so könnte die Beschreibung dieser Metadaten als Meta-Metadaten 
bezeichnet werden. Stattdessen werden solche Daten im Kontext der FTLight-Spezifikation als 
Framework bezeichnet. 

Optionale Werte 
Framework-Informationen werden durch leere Datenfelder eingeleitet, wie sie zum Beispiel durch 
einen zweifachen Doppelpunkt im Anschluss an eine Pfaddefinition entstehen. Alle Daten, welche 
dem zweifachen Doppelpunkt folgen, werden zu optionalen Werten, welche in das hierarchisch 
darüber liegende leere Feld eingetragen werden können. 

Zum Beispiel: 
Radioquelle::Sonne,Krabbennebel,3C353 

Die Werte “Sonne”, “Krabbennebel” und 3C353 stellen die optionalen Werte dar, welche dem Feld 
“Radioquelle” als Wert auf der hierarchisch darunterliegenden Ebene zugewiesen werden können 

Kommentare 
Ein Kommentar wird durch zwei benachbarte leere Datenfelder eingeleitet, wie zum Beispiel:  
Radioquelle:::Dies ist der Name der beobachteten Radioquelle. 

Schlüsselworte auf der Ebene von Kommentaren können dazu benutzt werden, um Empfehlungen 
für das Ausfüllen der Datenfelder zu geben, zum Beispiel:  
Radioquelle:::Limit:Zeichen:80 

Die Empfehlung für “Radioquelle” ist in diesem Fall, dass sie nicht mehr als 80 Zeichen lang sein 
sollte.  

Standardvorgaben 
Sobald man ein Element am Ende einer Reihe von optionalen Werten anfügt wird dieses Element 
zur Standardvorgabe und die gesamte Hierarchie von darüber liegenden optionalen Werten wird an 
der Zielposition eingetragen. Diese Standardvorgabe kann später dadurch überschrieben werden, 
dass ein anderer optionaler Wert aus dem Wertevorrat als reales Element in die FTLight-Datei 
eingetragen wird, zum Beispiel: 
Beobachtung::Radioquelle:Sonne 
Beobachtung::Radioquelle::Sonne,Krabbennebel,3C353 
… 
Beobachtung:Radioquelle:Krabbennebel 



Zunächst wird “Sonne” als Standardvorgabe für “Radioquelle” eingetragen, was später durch den 
Eintrag “Krabbennebel” überschrieben wird. 

Mehrfachspezifikationen 
Im Falle von mehreren gleichförmigen Datenstrukturen ist es sinnvoll, die Framework-Daten nur 
einmal einheitlich für alle Datenstrukturen anzugeben. Bei der Arbeit mit mehreren gleichartigen 
Empfangskanälen kann zum Beispiel die Angabe für die Kanalnummer in der Pfadangabe 
freigelassen werden, wodurch sich die anschließenden Festlegungen auf alle Kanäle beziehen: 
Empfangskanal,::Abtastrate:Hz 

Interpretation 
Framework-Festlegungen werden in der Regel in einer speziellen Framework-Datei abgelegt, 
welche von den darauf aufbauenden Datendateien referenziert wird. Der Inhalt einer Framework-
Datei ist als Hilfe zum Ausfüllen von Datenstrukturen gedacht, zum Beispiel durch das Vorgeben 
geeigneter Standardwerte sowie weiterer Optionen sowie auch für das Bereitstellen von 
Erläuterungen für das Ausfüllen der Felder. Die Framework-Daten bewirken niemals eine 
Beschränkung für das Ausfüllen von Datenstrukturen, jedoch werden sie Empfehlungen für 
sinnvolle Einschränkungen beim Ausfüllen vorgeben, wie z.B. die Anzahl der Zeichen in: 
Radioquelle:::Limit:Zeichen:80 

Dennoch ist es Sache des Benutzers von Framework-Daten, ob die Einschränkungen beachtet 
werden oder auch nicht. 

Datenintegrität 
Das Ziel einer Unterstützung von Datenintegrität ist es zum einen, mögliche Datenverfälschungen 
zu erkennen und zum anderen ein Konzept anzubieten, mit dessen Hilfe soviel als möglich der noch 
unversehrten Daten eines defekten Files/Streams wiedergewonnen werden können. 

Die Unterstützung von Datenintegrität in einem FTLight File/Stream basiert auf einer Zeile als 
kleinster Einheit, für die die Datenkonsistenz geprüft werden kann. Daher kann eine Prüfsumme 
(optional) an das Ende einer Zeile angehängt werden, welche von allen Zeichen der Zeile vor der 
Prüfsumme zuzüglich einer Zeilennummer, welche zeitweilig die Stelle der Prüfsumme einnimmt, 
berechnet wird. 

Die Prüfsumme wird als Binärfeld eingesetzt, welches durch ein vorangehendes Gleichheitszeichen 
eingeleitet wird. Wenn ein Binärfeld am Ende einer Zeile nach einem Gleichheitszeichen erscheint, 
so handelt es sich um die Prüfsumme.    

Prüfsummenberechnung 
Eine Prüfsumme wird durch ein oder mehrere Symbole des Binärdatenformats gebildet. Abhängig 
von der Anzahl der binären Symbole im letzten Feld der Zeile wird die Prüfsumme 216 zur Potenz 
der Anzahl sein, z.B.  216*216 = 46656 im Falle von zwei Symbolen oder 10077696 im Falle von 
drei Symbolen. 

Die Anzahl der Symbole sollte in Abhängigkeit von der Länge der Zeile gewählt werden. Sie kann 
von einer Zeile zur nächsten variieren. Für eine kurze Textzeile wird ein einzelnes Symbol in der 



Regel ausreichend sein. Falls jedoch mehrere Gigabyte von Daten in einem einzelnen Element 
untergebracht werden, z.B. von einer Audio/Video-Datei oder wenn eine große FTLight-Datei als 
Binärdaten in einem Element gekapselt wird dann kann es empfehlenswert sein, entsprechend 
mehrere Symbole für die Darstellung der Prüfsumme zu verwenden. Es gibt vom Konzept her keine 
Begrenzung für die Anzahl der Symbole in einer Prüfsumme. 

Nach Festlegung einer Symbolanzahl wird die Prüfsumme dadurch berechnet, dass der Rest beim 
Teilen der gesamten Zeile durch die Basis der Prüfsumme ermittelt wird. Vor Beginn dieser 
Rechnung wird die Zeilennummer (als ASCII-String) beginnend mit 1 für die erste Zeile an Stelle 
der Prüfsumme eingetragen. 

Beispiel:          Einstellige Prüfsumme für die Zeile 7 
      ,Data=7 

Zeichen           Wert                Teiler Rest                               _  
            ,               44                                   44 % 216 =   44 
            D             68                (  44*256+  68) % 216 = 100 
            a              97                (100*256+  97) % 216 = 209 
            t               116              (209*256+116) % 216 =   52 
            a              97                (  52*256+  97) % 216 =   17 
            =              61                (  17*256+  61) % 216 =   93 
            7              55                (  93*256+  55) % 216 =   103 

Das Zeichen welches dem Symbol 103 entspricht ist 103 + 32 = 135 entsprechend den zuvor für die 
Bildung des Binärdatentyps aufgestellten Regeln. Dieser Wert entspricht dem Zeichen ‘‡‘. Daher 
wird die Zeile mit der Prüfsumme wie folgt aussehen: 

      ,Data=‡ 

Der Empfänger der Zeile wird die gleichen Rechnungen durchführen und wird dadurch in der Lage 
sein, die Konsistenz der Daten durch Vergleich mit der Prüfsumme am Ende der Zeile zu 
überprüfen. Bevor die Rechnungen durchgeführt werden muss der Empfänger die Prüfsumme durch 
eine Zeilennummer ersetzen, welche Empfänger-seitig zu bilden ist. Daher wird die Zeilennummer 
ebenso überprüft, ohne dass diese explizit übermittelt werden muss. 

Wiederherstellung defekter Daten 
Gelegentlich kann es vorkommen, dass ein einzelnes Byte oder eine Serie von Bytes in einem File/
Stream verfälscht werden. Obwohl eine Prüfsumme das Feststellen einer Datenverfälschung 
ermöglicht, so kann sie dennoch keinen Beitrag zum Wiederherstellen der ursprünglichen Daten 
leisten. Daher wird es von den intakten Zeilen abhängen, ob Informationen wiederhergestellt 
werden können. Angenommen der Pfad der Information ist durch die defekte Zeile nicht verändert 
worden, so werden alle anderen Daten ihre Stellung in der Datenhierarchie beibehalten. Lediglich 
die defekte Zeile wird in diesem Fall verloren sein. 

Falls jedoch in der defekten Zeile der Pfad geändert wurde und die darauffolgende Zeile sich auf 
den aktuellen Pfad bezieht dann werden alle nachfolgenden Informationen an eine falsche Stelle in 
der Informationshierarchie gesetzt werden. In diesem Fall ist der einzig mögliche Ausweg, die Datei 
in einem Texteditor zu öffnen und die defekte Zeile von Hand richtig zu stellen, soweit deren Inhalt 
bekannt ist oder aus der Struktur abgeleitet werden kann. 



FTLight-Archiv 
Wenn ein Computer eine FTLight-Datei generiert oder einen FTLight-Stream von einem anderen 
Computer empfängt dann wird der Inhalt dieses Files/Streams in der Regel auf die Festplatte 
geschrieben. Der folgende Archivaufbau gestattet es, beliebige FTLight-Dateien auf die Festplatte 
zu schreiben, ohne dass Konflikte mit bereits dort vorhandenen früheren Dateien befürchtet werden 
müssen. 

Der Schlüssel zum Erreichen eines eindeutigen Namens für den Pfad und die Datei ist der 
Zeitstempel für das Erstellen der Datei. Als eine unveränderliche Regel wird der Zeitstempel des 
Erstellens einer Datei immer auf Position “0-0” geschrieben und folgt damit direkt dem 
Identifikator auf der Position “0” in jedem FTLight File/Stream. Dies ist eine der fest definierten 
Eigenschaften von einem FTLight File/Stream, wo Funktionalität mit verbunden ist und aus diesem 
Grund muss diese Regel für alle Zeiten erhalten bleiben. 

Die Verzeichnisstruktur in einem FTLight-Archiv ist wie folgt definiert: 

1 – FTLight 
2 – Ortsbezeichner (Galaxie-Zentralsonne-Sonnensystem-Planet_Locator_lokaler-Ortsname) 
3 – Identifikator (Personenkennung@Ortsbezeichner.Gerätetechnik) 
4 – Jahr 
5 – Monat 
6 – Tag 
7 – Stunde 
8 – Minute 
9 – Sekunde 
10 – Millisekunde 
11 – … 

Abhängig von der Zeitdauer, die eine FTLight-Datei umfasst, wird die eigentliche Datei zum 
Beispiel in einem ‘Sekunden’-Ordner abgelegt oder auf einer höheren oder niedrigeren Ebene.Die 
Namen der Dateien werden dabei wie folgt gebildet, wobei die Werte in Klammern zu ersetzen 
sind: 

            (Jahr)-(Monat)-(Tag)_utc(Stunde)h(Minute)m(Sekunde)s.(Millisekunde)_(Identifikator).csv 

Unter der Voraussetzung, dass es für einen gegebenen Identifikator zu jedem Zeitabschnitt nur eine 
einzige Datei geben kann, wird der gewählte Dateiname universell eindeutig sein. Anstelle eines 
Identifikator kann auch ein Bezeichner für den Dateityp zum Einsatz kommen. Die 
Dateiendung .csv wird als Vorzugsvariante vorgeschlagen, wodurch die Datei bequem in Excel zum 
Anschauen geöffnet werden kann. 

Beispiel:          FTLight-Archiv mit Dateien einer 6-Minuten und einer Millisekunden Zeitdauer 
FTLight 
  JO63rx_Dambeck 
    EKD@JO63rx_Dambeck.RSpectro 
      2004 
        Jan 
          20th 
            utc06 
              06m 
              12m 
              18m 
              24m 
                2004-01-20_utc06h24m_EKD@JO63rx_Dambeck.RSpectro.csv 
              31m 



                47s 
                  719ms 
                    2004-01-20_utc06h31m47s719ms_EKD@JO63rx_Dambeck.RSpectro.csv 

Ein weiterer Vorteil zusätzlich zur Eindeutigkeit der Dateinamen ist es, dass Informationen sehr 
leicht wiedergefunden und überprüft werden können. Weiterhin können Informationen in beliebigen 
Portionen entnommen und mittels Diskette, CD, DVD, Ftp-Datei oder einem beliebigen anderen 
Medium oder Übertragungskanal zu anderen Computern übermittelt werden. 

Beispiel: 

Das Übertragen der Beobachtungsdaten eines ganzen Tages von einer Station zu einer anderen 
Station erfordert lediglich das Komprimieren des Verzeichnisses vom entsprechenden Tag sowie das 
Übermitteln der entstehenden Datei zur Empfängerseite. Der Empfänger kann die erhaltene Datei 
dem eigenen FTLight-Archiv direkt hinzufügen ohne Gefahr zu laufen, dass vorhandene Daten 
dadurch überschrieben oder beeinträchtigt werden könnten. 

Versionsverfolgung für Informationselemente 
Informationen können zum Entstehungszeitpunkt falsch oder unvollständig sein oder sie können 
sich mit der Zeit ändern. Daher ist eine Methode erforderlich, welche das Korrigieren, Erweitern 
und Ändern von Informationen gestattet. Da sich der Erstellungszeitpunkt einer Information 
niemals ändert besteht eine zusätzliche Anforderung darin, auch unterschiedliche Versionen einer 
gegebenen FTLight-Datei in einem Archiv zu verwalten. 

Das wesentliche Mittel für das Hinzufügen von Versionen zu bereits existierenden Dateien im 
FTLight-Archiv ist das Zuweisen eines neuen Zeitstempels auf die Nullposition in der dem 
aktuellen Zeitstempel untergeordneten Informationsmenge. Jede weitere Version wird das Gleiche 
tun und der Nullposition in der dem aktuellen Zeitstempel untergeordneten Informationsmenge 
einen neuen Zeitstempel zuweisen. Der Identifikator der Person, welche die Änderung 
vorgenommen hat wird ebenfalls der neuen Informationsmenge zugewiesen, welche bereits den 
Zeitstempel der Änderung auf der Nullposition eingetragen hat. 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,1073217600 
,Frequenz:GHz,10.600 
,Bandbreite:kHz,250 

Etwa zwei Wochen später wird die Frequenzinformation durch eine Person mit dem Identifikator 
kantz@wegalink.eu von 10.6 GHz auf 10550 kHz geändert: 
EKD@JO63rx_Dambeck.RSpectro,1073217600 
,Frequenz:GHz,10.600 
,Bandbreite:kHz,250 
0-0:1075123807,kantz@wegalink.eu,Frequenz:kHz,10550 

• Der zweite Informationsblock kann folgendermaßen interpretiert werden: 
• Diese Information gehört zum Identifikator EKD@JO63rx_Dambeck.RSpectro  
• Die ursprüngliche Information ist mit dem Zeitstempel 1073217600 verknüpft  
• Eine geänderte Version wurde mit dem Zeitstempel 1075123807 erzeugt  
• Der Identifikator der Person, welche die Änderung vornahm, ist kantz@wegalink.eu  
• Die geänderte Version hat eine neue 'Frequenz: kHz, 10550'  

Zusammenfassend kann festgestellt werden, dass eine neue Version von einer bereits existierenden 
Version dadurch erstellt wird, dass der Pfad des aktuellen Zeitstempels durch einen neuen 
Zeitstempel erweitert wird. Weiterhin wird der Identifikator der Person, welche die Änderung 



vornahm der neuen Informationsmenge hinzugefügt. Ferner werden alle geänderten Elemente der 
neuen Informationsmenge hinzugefügt, so als ob sie auf der Ebene des ersten Zeitstempels wären.  

Version der FTLight-Spezifikation 
Die FTLight-Spezifikation ist dem Ziel verpflichtet, dass sich die grundlegenden Regeln zum 
Erzeugen von FTLight-Datenstrukturen niemals ändern. Dennoch wird sich die Spezifikation weiter 
entwickeln, insbesondere zum Beispiel durch das Hinzufügen von neuen Datentypen und weiteren 
optimierten Datenkodierungen.  

Im Hinblick auf die Langzeitnutzung (Jahrhunderte) wird angestrebt, dass aus einmal generierten 
Datensammlungen durch eine KI auch ohne Informationen zur verwendeten FTLight-Spezifikation 
allein aus dem inneren logischen Zusammenhang heraus sowohl Datenstrukturen als auch die 
Bedeutung der Daten wieder regeneriert werden können. 

Für das generische Verarbeiten von FTLight-Datensammlungen basierend auf der FTLight-
Spezifikation (Jahrzehnte) kann es jedoch von Interesse und nützlich sein, zusätzlich zum Zeitpunkt 
der Erstellung einer Datensammlung auch die zugrunde liegende Version der FTLight-Spezifikation 
zu kennen. Dies kann (optional) durch Angabe des Datums der FTLight-Spezifikation nach dem 
Zeitstempel der Erstellung eines Files/Streams und einem Leerzeichen erfolgen, zum Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,1073217600 2004-01-12 

Zeitsynchronisation 
Das Anfordern eines Zeitstempels von einem anderen System erfolgt durch Übertragung des IFTL 
des anderen Systems (Empfänger) gefolgt vom eigenen IFTL (Absender). 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,EKD@JN58ve_Poing.Lyra 

Als Antwort wird ein Informationspaket erwartet, welches außer den beiden IFTLs in umgekehrter 
Reihenfolge und einem Zeitstempel mit der aktuellen lokalen Zeit des anderen Systems keine 
weiteren Angaben enthält. Dabei handelt es sich um ein TIME-Kommando. Dieses muss sofort 
wieder ohne Verzögerung in gleicher Weise mit der aktuellen lokalen Zeit beantwortet werden.  

Beispiel: 
EKD@JN58ve_Poing.Lyra,EKD@JO63rx_Dambeck.RSpectro,1607798473.123456789 
EKD@JO63rx_Dambeck.RSpectro,EKD@JN58ve_Poing.Lyra,1607798473.234567890 

Die Aufgabe von TIME-Kommandos ist die Übertragung der lokalen Zeit des Absenders zu einem 
Empfänger. Es obliegt im weiteren dem Empfänger, ob die übertragene Zeit als eigene lokale Zeit 
übernommen wird oder ob lediglich die Differenz zwischen den lokalen Zeiten des Absenders und 
des Empfängers mit einer Referenz zum IFTL des Absenders für die weitere Kommunikation mit 
diesem gespeichert wird. Insbesondere bei Kommunikation mit mehreren Seiten wird in der Regel 
nur eine Gegenseite als Zeitnormal dienen. Für die anderen Kommunikationspartner wird lediglich 
die Differenz zur eigenen lokalen Zeit mit einer Referenz zum IFTL der Gegenseite gespeichert. 

Nach einer zweiseitigen TIME-Übertragung kann der Initiator die Differenz zwischen der lokalen 
Zeit der Gegenseite und der eigenen lokalen Zeit anhand der übertragenen Zeitstempel ermitteln. 
Für das Erzielen einer höheren Präzision bei der Zeitsynchronisation kann eine Serie von TIME-
Kommandos verwendet werden. Mittels statistischer Methoden können aus den registrierten Zeiten 
für das Absenden und Empfangen der TIME-Übertragungen deren mittlere Laufzeit ermittelt und 
diese als Korrekturwert für die Zeitsynchronisation berücksichtigt werden. 



Anfrage/Antwort-Verfahren für gespeicherte Daten 
Zunächst soll der Vorgang des Sendens einer Anfrage und das nachfolgende Empfangen einer 
Antwort beschrieben werden, wofür anschließend ein Verfahren definiert wird: 

• Die anfragende Seite sendet eine Anforderung nach einer Untermenge von gespeicherten, 
statischen Daten, welche zu einem spezifizierten Identifikator gehören 

• Eine antwortende Seite hat die angefragten Daten und übersendet diese an die anfragende Seite 

• Die anfragende Seite ergänzt ihr FTLight-Archiv mit der erhaltenen Antwort 

• Die anfragende Seite kann in schneller Folge Anfragen senden und Antworten erhalten 

• Die Antwort wird in jedem Fall die Originaldatei mit unverändertem Zeitstempel oder eine 
Untermenge davon sein 

• Es können mehrere Antworten zu ein und derselben Originaldatei im Ergebnis von 
unterschiedlichen Anfragen eintreffen 

• Mehrere Originaldateien bzw. Untermengen davon können im Ergebnis einer einzigen Anfrage 
eintreffen 

Anfragestruktur 
Das Anfragen von Informationen von anderen Informationshierarchien besteht aus allgemeinen 
Elementen, welche eine Anfrage identifizieren sowie dem Spezifizieren der jeweils nachgefragten 
Information. Die Detailinformationen einer Anfrage müssen zwischen den beiden Seiten 
abgestimmt sein, während die allgemeinen Anfrageparameter immer gleich bleiben. Eine Anfrage 
wird mit den IFTLs von Empfänger und Absender eingeleitet und muss beim Absenden auf der 
Position 0 unterhalb des Absenders in der Regel einen aktuellen Zeitstempel enthalten. Dieser ist 
die Grundlage für eine fortlaufende Einschätzung der Zeitsynchronisation zwischen beiden Seiten. 

Allgemeine Anfrageelemente 
Das in der FTLight-Spezifikation festgelegte Anfrageelement (QUERY/EMPTY=96, Back-
Apostroph) symbolisiert die „Leere“ welche eine Antwort provozieren soll, um die „Leere“ zu 
füllen. Es stellt somit das allgemeine Anfrageelement dar, sobald es allein in der Position 0 in einer 
beliebigen Informationsmenge auftaucht. In diesem Fall ist die anfragende Seite an der 
Übermittlung der vollständigen Informationsmenge interessiert, welche sich im FTLight-Archiv der 
antwortenden Seite an der entsprechenden Stelle befindet, einschließlich aller hierarchisch 
untergeordneten Informationsmengen. Der Identifikator der anfragenden Seite wird dabei in der 
Position 0 in der dem Anfrageelement untergeordneten Informationsmenge übertragen. 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,`,EKD@JN58ve_Poing.Lyra,1607798473.123456789  

Der Anfragesteller mit dem Identifikator EKD@JN58ve_Poing.Lyra möchte alle Informationen 
erhalten, welche sich unterhalb des Identifikators EKD@JO63rx_Dambeck.RSpectro befinden. Da 
es sich hierbei um eine riesige Datenmenge handeln könnte, wären einige Einschränkungen zur 
Zeitperiode angebracht, um die Größe der erwarteten Antwort einzuschränken. Jedoch gehört dies 
bereits zu den speziellen Elementen, welche beide Seiten miteinander vereinbaren müssen. 



Ein allgemeines Element für das Begrenzen einer Anfrage ist das Hinzufügen von ausgewählten 
Elementen innerhalb der Informationsmenge, welche das Anfrageelement auf der ersten Position 
enthält. Dies begrenzt die Anfrage auf die Untermenge an Daten, welche sich unterhalb der 
angegebenen Elemente in der Informationshierarchie befindet. 

Beispiel: 

EKD@JO63rx_Dambeck.RSpectro:`,Frequenz,Bandbreite 
0-0,EKD@JN58ve_Poing.Lyra,1607798473.123456789 

Im obigen Beispiel werden nur die Frequenz und die Bandbreite angefragt. Dies würde die große 
Menge an Messdaten ausschließen, welche zum Beispiel unterhalb des Datenelementes angeordnet 
sind.  Es würden jedoch alle Dateien zurückgesendet, wo sich die Elemente Frequenz und 
Bandbreite auf der zweiten Ebene, genau unterhalb vom Identifikator befinden. Dies könnte 
ebenfalls noch eine große Datenmenge sein, so dass auch in diesem Fall noch eine Einschränkung 
bezüglich des Zeitabschnittes sinnvoll wäre. 

Ein gerade in Übertragung befindlicher Antwort-Stream kann jederzeit durch die anfragende Seite 
gestoppt werden. Das allgemeine Element zum Stoppen einer Datenübertragung ist ein 
Anfrageelement (QUERY) an Stelle des anfragenden Identifikators. Dieser wird eine Ebene tiefer 
auf der Position 0 der dem zweiten Anfrageoperator untergeordneten Informationsmenge gesetzt. 

Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,`,`,EKD@JN58ve_Poing.Lyra,1607798473.123456789 

Das obige Beispiel stoppt den Datenstrom, der von der antwortenden Seite mit dem Identifikator 
EKD@JO63rx_Dambeck.RSpectro an die anfragende Seite mit dem Identifikator 
EKD@JN58ve_Poing.Lyra gesendet wird. 

Anforderung von Identifikatoren 
Ein einzelnes Back-Apostroph gefolgt vom Identifikator der anfragenden Stelle fordert eine Liste 
aller Identifikatoren an. Die Antwort besteht in diesem Fall aus einer Liste von Identifikatoren 
zusammen mit dem am weitesten zurückliegenden Zeitstempel für jeden Identifikator. 

Beispiel: 
`,EKD@JN58ve_Poing.Lyra,1607798473.123456789 

Die Antwort auf diese Anfrage könnte wie folgt aussehen: 
EKD@JO63rx_Dambeck.RSpectro,1073212000 

Die Antwort informiert die anfragende Seite über die Verfügbarkeit von Daten zum Identifikator 
EKD@JO63rx_Dambeck.RSpectro beginnend ab dem Zeitpunkt, welcher durch den Zeitstempel 
1073212000 in Sekunden nach dem 1. Januar 1970 in UTC angegeben ist. 

Zeiteinschränkungen 
Eine Zeiteinschränkung gehört zu den zusätzlichen Elementen des Anfrage/Antwort-Verfahrens, 
welche zwischen den beiden miteinander kommunizierenden Seiten vereinbart werden muss. Eine 
Struktur dafür könnte wie folgt aussehen: 
EKD@JO63rx_Dambeck.RSpectro,`,EKD@JN58ve_Poing.Lyra,1607798473.123456789 
0-0:Start:UTC,1073217400 
:Ende:,1073217800 
:Intervall:Sekunden,20 



Im obigen Beispiel wird ein 400 Sekunden langer Zeitabschnitt angefordert und die Messwerte 
werden in einem Zeitintervall von 20 Sekunden erwartet. Solche Daten eignen sich zum Beispiel für 
eine Voransicht. 

Arrayabfragen 
Die Abfrage eines Arrays an einer adressierten Position kann durch eine Adressangabe weiter 
spezifiziert und dadurch eingeschränkt werden, zum Beispiel: 
EKD@JO63rx_Dambeck.Array,Data`3`,EKD@JN58ve_Poing.Lyra,1607798473.123456789  

schränkt die Abfrage auf das dritte Element (Untermenge) eines Arrays an der Position 'Data' ein.  

Anfragen, Abonnieren und Schreiben von aktuellen Daten 
Nachfolgend wird ein Verfahren zum Anfragen und Abonnieren von aktuellen Daten beschrieben, 
wodurch bestehende als auch neu entstehende statische und dynamische Daten („Ereignisse“) 
automatisch unmittelbar an eine anfragende Seite übertragen werden: 

• die anfragende Seite eröffnet eine Verbindung zu einer Informationshierarchie, von der während 
der Dauer der Verbindung Daten automatisch empfangen werden sollen 

• die anfragende Seite spezifiziert ein Datenelement in der Informationshierarchie, bei dessen 
Änderung unter bestimmten Bedingungen eine Übertragung zur anfragenden Seite erfolgt 

• die anfragende Seite legt fest, ob die Übertragung von geänderten Daten nur einmalig oder bei 
jeder Änderung erfolgen soll 

• bei Anforderung aller Änderungen kann die Übertragungshäufigkeit auf einen fest  
vorgegebenen Zyklus eingeschränkt werden, wobei eine Übertragung des aktuellen Wertes im 
vorgegebenen Zyklus auch dann erfolgt, wenn keine Änderung vorliegt 

• zum spezifizierten Datenelement können auch Unterelemente mit übertragen werden wenn dies 
beim Abonnieren so festgelegt wird 

• eine Übertragung wird auch dann durchgeführt, wenn sich eines der Unterelemente geändert 
hat, falls beim Abonnieren Unterelemente mit angefordert wurden 

• neben einem einzelnen Datenelemente und dessen Unterelementen können auch Datensätze 
abonniert werden, wie sie beim Synchronschreiben entstehen 

• die anfragende Seite kann einen Startzeitpunkt festlegen, ab wann mit der einmaligen oder 
mehrmaligen Übertragung von geänderten Daten begonnen werden soll 

• ein Abonnement für geänderte Daten endet wenn die anfragende Seite dieses aufhebt oder wenn 
die Verbindung zur Informationshierarchie von einer der beiden Seiten beendet wird. 

Datenelement spezifizieren 
Das Anfordern eines Abonnements für geänderte Daten erfolgt, wie in der FTLight-Spezifikation 
für Anfragen festgelegt, durch ein Anfrageelement (QUERY=96, Back-Apostroph) auf der Position 
des angeforderten Datenelementes. Die Information auf der Position 0 unterhalb des 
Anfrageelementes legt die Häufigkeit der Übertragung fest. 

Falls unterhalb des Anfrageelementes keine Information vorhanden ist, dann erfolgt eine einmalige 
unmittelbare Übertragung des Wertes an die anfragende Seite. Wenn dagegen eine Zahl auf der 
genannten Position steht, dann legt diese die Anzahl der Sekunden eines Übertragungszyklus fest, 
wobei 0 das Übertragen jeder Änderung bewirkt, zum Beispiel 



EKD@JO63rx_Dambeck.RSpectro,Frequenz,` 
EKD@JO63rx_Dambeck.RSpectro,Frequenz,`,0 
EKD@JO63rx_Dambeck.RSpectro,Frequenz,`,2.5 

Die erste Zeile bewirkt eine einmalige Abfrage der aktuellen Frequenz. Die zweite Zeile bewirkt, 
dass alle Änderungen der Frequenz unmittelbar zurück gegeben werden. Die dritte Zeile gibt 
Änderungen in einem festen Raster von 2.5 Sekunden zurück, wobei eine Übertragung des Wertes 
in diesem Zeitraster auch erfolgt, wenn keine Änderungen der Frequenz erfolgt sind. 

Bei Angabe eines Übertragungszyklus kann zusätzlich darunter auf der Position 0 ein Zeitpunkt für 
den Start der Übertragung in Sekunden angegeben werden. Falls die Zeitangabe in der 
Vergangenheit liegt dann wird die Angabe als Zeitraster behandelt, z.B. 1 bedeutet den Start der 
Übertragung zu Beginn der nächsten Sekunde. Eine 0 dagegen beginnt die Übertragung mit der 
nächsten Änderung des Wertes, zum Beispiel wenn eine einmalige Übertragung angefordert wurde. 
Eine Zeitangabe in der Zukunft startet die Übertragung mit Erreichen der angegebenen Zeit. 
EKD@JO63rx_Dambeck.RSpectro,Frequenz,`,,0 
EKD@JO63rx_Dambeck.RSpectro,Frequenz,`,0,1373217800 
EKD@JO63rx_Dambeck.RSpectro,Frequenz,`,2,1 

Die erste Zeile bewirkt eine einmalige Übertragung der Frequenz bei deren nächsten Änderung. Die 
zweite Zeile bewirkt, dass ab dem angegebenen absoluten Zeitpunkt (Sekunden nach dem 1. Januar 
1970 UTC) alle Änderungen übertragen werden. Mit der dritten Zeile wird eine Übertragung im 2-
Sekunden-Zeitraster beginnend ab der nächsten vollen Sekunde gestartet. 

Wenn statt eines einzelnen Datenelementes alle Unterelemente eines Parent-Elementes übertragen 
werden sollen dann wird dies durch einen Doppelpunkt ':' zum Eintragen des Anfrageelementes auf 
der Position 0 unterhalb des Parent-Elementes bewirkt, zum Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,Frequenz:` 
EKD@JO63rx_Dambeck.RSpectro,Frequenz:`:0:1373217800 
EKD@JO63rx_Dambeck.RSpectro,Frequenz:`:2:1 

Mit der ersten Zeile wird wie zuvor ein Anfrageelement auf die Position eines Frequenzwertes 
gesetzt, jedoch werden bei der Übertragung auch alle Unterelemente des Parent-Elementes 
'Frequenz' mit erfasst und bei jeder Änderung von einem der Unterelemente an die anfragende Seite 
übertragen. Zum Ergänzen des Anfrageelementes mit einem Zyklus und Startzeitpunkt müssen in 
diesem Fall ebenfalls Doppelpunkte ':' verwendet werden um jeweils die Position 0 zu erreichen. 

Beim Synchronschreiben werden mehrere Datenelemente referenziert, welche gleichzeitig mit 
neuen Daten beschrieben werden. Das Abonnieren von Datensätzen erfolgt durch Eintragen des 
Anfrageelementes auf Position 0 des '@' Operators für das Synchronschreiben, zum Beispiel: 
EKD@JO63rx_Dambeck.RSpectro 
Zeit,Flux,Temperatur 
[Sekunden seit 1.1.1970],[Jy],[°C],@:` 

Ergänzende Angaben zum Zyklus und zum Startzeitpunkt werden wie bei einem einzelnen 
Datenelement jeweils auf Position 0 unterhalb des Anfrageelementes ergänzt, zum Beispiel 
0-3-0:`:2:1 

Zum Beenden eines Abonnements wird an der Position 0 unterhalb des Anfrageelementes ein 
weiteres Anfrageelemente eingetragen, zum Beispiel: 
EKD@JO63rx_Dambeck.RSpectro,Frequenz,`,` 
0-3-0:`:` 

Die Übertragung von Änderungen der Frequenz oder eines Datensatzes werden dadurch beendet, 
auch wenn die Verbindung zur Informationshierarchie noch weiter bestehen bleiben sollte. 

Schreiben von Daten und Kommandos 



Neben den beschriebenen Parametern zum Abonnieren von Daten können auch beliebige Daten und 
insbesondere Kommandos an eine Empfängerseite übertragen werden. 

- work in progress - 

Laufzeitinformationen 

- work in progress - 

EKD@JN58nc_Türkenfeld.Algorithm,1549200792 
,volatile,` 

,volatile,`,#12345 

Algorithmen 
EKD@JN58nc_Türkenfeld.Algorithm,1549200792,<log level>,<message>,<context> 
,big numbers,`,0,<implementation> 
,,`,<#hashAlgorithm1>,<#hashClient1> 
... 
,,`,<#hashAlgorithmN>,<#hashClientN> 

Client1-Bereich 
,,`,<#hashClient1>,<#hashAlgorithm1>,<workspace 1> 

ClientN-Bereich 
,,`,<#hashClientN>,<#hashAlgorithmN>,<workspace 1> 

Kommandos (an #hash-Elemente): 

• RUN 

• WAIT 

• GET 

• SET 

• STOP 

• REMOVE 

Benchmarking 
Das Benchmarking der FTLight-Referenzimplementierung in C++ erfolgt im Cosmos-Framework 
mit dem VS2022 Compiler. Die Zielstellung des Cosmos-Framework besteht darin, die 
Abhängigkeit von Bibliotheken auf die Standardbibliotheken des verwendeten Compilers zu 
beschränken. 

Das Testprogramm kann mit einem VS2022-Compiler auf folgendem Pfad geöffnet und erstellt 
werden: 

…\FTLightApp\software\Apps\TestApps\CmModuleTest 



Untenstehend wird die Ausgabe des Testprogramms (Release) für die Service-Module des Cosmos-
Framework und für die FTLight-Module gezeigt: 

• Initialize - Initialisierung des Modultest 

• CmString - Stringfunktionen des Cosmos-Framework 

• CmDateTime - Zeit- und Datumsfunktionen des Cosmos-Framework 

• CmIFTL - IFTL-Funktionen für FTLight 

• CmStringFTL - Stringfunktionen für FTLight 

• CmMatrixFTL - Matrix-Funktionen für die RAM-Repräsentation von FTLight-Daten 

• CmValueFTL - Value-Funktionen für die Darstellung von FTLight-Werten 

• CmValueINI - Value-Funktionen für die Darstellung von persistenten FTLight-Werten 

Das Testprogramm führt eine Überprüfung auf Memory-Leaks durch. Werte von 0.0 bei „items“ 
und „bytes“ bedeuten, dass kein Memory-Leak vorliegt. 

Für die getesteten Funktionen wird ein Laufzeit-Benchmark in der Regel dadurch ermittelt, dass die 
Funktion mehrfach abläuft und die gemessene Gesamtlaufzeit durch die Anzahl der Durchläufe 
geteilt wird. Dadurch wird der Einfluss von Caching und von Setup-Zeiten minimiert. 

Untenstehende Benchmarks wurden auf einem M2-Prozessor ermittelt. Zum Beispiel wurde für die 
Wandlung von Binärwerten in das MCL-Format ein Wert von 0.9 ns/Byte ermittelt, was einem 
Durchsatz von mehr als 1 GByte/s entspricht. Für die Wandlung von Binärwerten in das FTL-
Format wurden auf diesem Prozessor dagegen 2.7 ns/Byte benötigt. Bei „ref“ sind als Referenz die 
absolut besten Werten aufgeführt, welche auf allen getesteten Prozessoren erreicht werden konnten. 

====================================================== 
 Cosmos Module test: CmModuleTest 
====================================================== 

Initialize... 
 Memory items= 0.000k (dif:     0)   bytes= 0.0k (dif:     0) 

CmString... 
 Memory items= 0.000k (dif:     0)   bytes= 0.0k (dif:     0) 

CmDateTime... 
 Memory items= 0.000k (dif:     0)   bytes= 0.0k (dif:     0) 

CmIFTL... 
 Memory items= 0.000k (dif:     0)   bytes= 0.0k (dif:     0) 

CmStringFTL... 
 bin2FTL          / Byte:    2.7 ns ref:   1.4 ++ 
 bin2MCL          / Byte:    0.9 ns ref:   0.9 
 bin2DIF(16)      / Byte:    3.4 ns ref:   1.5 ++ 
 bin2DIF(64)      / Byte:    9.3 ns ref:   2.8 ++ 
 encodeVAL         / Run:   3607 ns ref:  1092 ++ 
 decodeVAL         / Run:   62.9 ns ref:  46.4 
 encode no exponent/ Run:   2293 ns ref:   702 ++ 



 decode no exponent/ Run:   42.7 ns ref:  20.0 ++ 
 encodeTIME        / Run:   1820 ns ref:   556 ++ 
 decodeTIME        / Run:   42.0 ns ref:  16.8 ++ 
 Memory items= 0.000k (dif:     0)   bytes= 0.0k (dif:     0) 

CmMatrixFTL... 
 runtime double[2000] read                     17.1 ns 
 runtime double[2000] write                    11.2 ns 
 runtime double[2000] write/read               13.6 ns 
 runtime double[1000000] write/read            19.3 ns 
 runtime matrix new/delete(10000)            7459.3 ns 
 runtime matrix 3x4x5 write/read             3712.5 ns 
 runtime matrix 26D write/read              80257.1 ns 
 Memory items= 0.000k (dif:     0)   bytes= 0.0k (dif:     0) 

CmValueFTL... 

 runtime[1000] A + B 64-bit                             5.0 us 
 runtime[1000] C +=A 64-bit                             4.7 us 
 runtime[1000] A - B 64-bit                             4.5 us 
 runtime[1000] B - A 64-bit                             5.4 us 
 runtime[1000] C -=A 64-bit                             4.8 us 
 runtime[1000] A * B 64-bit                            36.3 us 
 runtime[1000] C *=A 64-bit                            35.0 us 
 runtime[1000] D / B 64-bit                           171.6 us 
 runtime[1000] D /=B 64-bit                           171.6 us 
 runtime[1000] D % B 64-bit                           171.2 us 

 runtime[100]  A + B bignum 100 digits                 48.2 us 
 runtime[100]  A - B bignum 100 digits                 41.8 us 
 runtime[100]  B - A bignum 100 digits                 40.3 us 
 runtime[10]   A * B bignum 100 digits               4138.1 us 
 runtime[10]   D / B bignum 100 digits               7983.7 us 

 runtime[100]  A + B bignum 240 digits                139.3 us 
 runtime[100]  A - B bignum 240 digits                131.0 us 
 runtime[100]  B - A bignum 240 digits                133.4 us 
 runtime[10]   A * B bignum 240 digits              29193.4 us 
 runtime[10]   D / B bignum 240 digits              53483.5 us 

 runtime[10]   RSA-100  330_bits   P * Q              972.1 us 
 runtime[10]   RSA-100  330_bits   RSA/P             2048.6 us 

 runtime[10]   RSA-130  430_bits   P * Q             1668.8 us 
 runtime[10]   RSA-130  430_bits   RSA/P             3361.7 us 

 runtime[10]   RSA-150  496_bits   P * Q             2190.4 us 
 runtime[10]   RSA-150  496_bits   RSA/P             4601.2 us 

 runtime[10]   RSA-174  576_bits   P * Q             3153.5 us 
 runtime[10]   RSA-174  576_bits   RSA/P             6002.1 us 



 runtime[10]   RSA-200  663_bits   P * Q             4150.7 us 
 runtime[10]   RSA-200  663_bits   RSA/P             7932.3 us 

 runtime[10]   RSA-230  762_bits   P * Q             5709.4 us 
 runtime[10]   RSA-230  762_bits   RSA/P            11627.6 us 

 runtime[10]   RSA-232  768_bits   P * Q             5967.6 us 
 runtime[10]   RSA-232  768_bits   RSA/P            11023.1 us 

 Memory items= 0.000k (dif:     0)   bytes= 0.0k (dif:     0) 

CmValueINI... 

 Memory items= 0.000k (dif:     0)   bytes= 0.0k (dif:     0) 

CmTest finished SUCCESSFULLY 



Appendix A 

A.1 Beispiel für das Speichern von mehrstufigen Metadaten vor 
einem Interferometrie-Datenblock 
MCL@JN76ec_Ljubljana.SIDI,1108598400:FTLight,2005-03-03 
,global metadata tag1:item1,item2,... 
,global metadata tag2:item1,item2,... 
,global metadata tagN:item1,item2,... 
,metadata for channel1,metadata tag1: item1, item2,...  
,,metadata tag2:item1, item2,...  
,,metadata tagN: item1, item2,...  
,metadata for channel2,metadata tag1: item1,item2,...  
,,metadata tag2: item1,item2,...  
,,metadata tagN: item1, item2,...  
,metadata for channelN,metadata tag1: item1, item2,...  
,,metadata tag2: item1,item2,...  
,,metadata tagN: item1, item2,...  
,correlation values for baseline 1  
:Time,Correlation  
:1108598400.123,0.9876  
:1108598400.124,0.9875 
:1108598400.125,0.9877  
...  
,correlation values for baseline 2 
:Time,Correlation  
:1108598400.123,0.9836  
:1108598400.124,0.9835 
:1108598400.125,0.9837  
...  
,correlation values for baseline 3 
:Time,Correlation  
:1108598400.123,0.3476  
:1108598400.124,0.3475 
:1108598400.125,0.3477  
... 

A.2 Beispiel für einen Mehrkanalempfänger mit wahlfreier 
Kanalselektion 
Frequenzkanäle werden wahlfrei und in unregelmäßigen Zeitintervallen abgefragt. In diesem Fall 
muss die volle Frequenz- und Zeitinformation mit jedem der Messwerte abgespeichert werden. Dies 
könnte folgendermaßen für eine erste Basislinie und in ähnlicher Weise für andere Basislinien 
aufgebaut werden: 
EKD@JN58ve_Poing.RSpectro,1108598400:FTLight,2005-03-03 
,Daten,Basislinie1:[m],12.35 
:Zeit,Frequenz,Signalstärke 
:[Sekunden seit 1970-01-01],[GHz],[0..4095],@ 
:1109462400.111,10.610,2745 
:1109462400.239,10.670,2745 
:1109462400.377,10.655,2745 



A.3 Beispiel für einen Mehrkanalempfänger mit regelmäßiger 
Kanalselektion 
Eine vordefinierte Frequenzliste wird in regelmäßigen Zeitabständen abgetastet. In diesem Fall ist 
es ausreichend, die Liste aller Frequenzen nur einmal anzugeben und jeweils die Startzeit für einen 
ganzen Block von Abtastwerten hinzuzufügen. Dies kann folgendermaßen erfolgen: 
EKD@JN58ve_Poing.RSpectro,1108598400:FTLight,2005-03-03 
,Daten,Basislinie1:[m],12.35 
:Zeit,Freq1,Freq2,Freq3,Freq4,Freq5 
:[Sekunden seit 1970-01-01],[GHz],[GHz],[GHz],[GHz],[GHz] 
:gleiche Zeitintervalle,10.630,10.635,10.640,10.645,10.650,@ 
:1109462400.100,2736,2850,2473,2945,2791 
:1109462500.100,2335,2457,2272,2628,2437 
:1109462400.100,2533,2593,2311,2593,2692 



Entwicklungsverlauf 
	 2025-12-30	 Konsolidierung der Integration von KI-Vorschlägen           

	 2025-12-28	 Evaluieren von KI-Vorschlägen           

	 2025-12-17	 Reihenfolge der KI-Vorschläge inhaltlich angepasst           

	 2025-12-16	 Versionsverlauf eingeführt und Dokument übersichtlicher gestaltet            

	 2025-12-15	 KI-Vorschläge in eine ToDo-Liste aufgenommen, (Fortsetzung)            

	 2025-12-14	 Benchmarking und FTLight-Referenzimplementierung ergänzt            

	 2025-12-13	 Einladung zur Mitarbeit und Erklärung zur OpenSource-Lizenz            

	 2025-12-12	 Kategorisierung der KI-Vorschläge, Ergänzung ToDo-Liste (Fortsetzung)            

	 2025-12-11	 KI-Vorschläge in eine ToDo-Liste aufgenommen, (Fortsetzung)            

	 2025-12-10	 KI-Vorschläge in eine ToDo-Liste aufgenommen, KI-Statements ergänzt            

	 2025-12-09	 KI-Hinweis zur Mehrfachnutzung von Steuercodes diskutiert und erläutert            

	 2025-12-08	 KI-Vorschlag zur Version der Spezifikation im FTLight-File/Stream ergänzt             

	 2025-12-07	 Review durch 7 KI-Systeme ergänzt             

	 2025-04-05	 FTLight als OpenSource auf der Ebene einer Spezifikation beschrieben                 

	 2025-02-05	 Binärer Datentyp (FTL): Layout-Korrektur beim => Operator                 

	 2024-11-21	 Datentypen umbenannt: MCL, FTL, TXL, NUM, DIF, FPGA, UNIT, TIME                  

	 2024-11-09	 Füllen von Tabellenspalten mit formatierten Arrays ergänzt                  

	 2024-11-05	 Adressierung von Gruppen mit gleichem Identifikator eingeführt                  

	 2024-09-18	 Identifikator-FTL-Datentyp auf IFTL umbenannt                  

	 2024-07-15     Link zur Anwendungsentwicklung „FTLightApp“ ergänzt 

            2023-06-18     Identifikator-Datentyp IFTL auf jenseits des Universums erweitert 

            2022-05-15     Algorithmische Antwort zum Realisieren aktiver Elemente eingeführt 

            2022-01-18     verschränkte DIF Messwerte bei geringer Schwankungsbreite eingeführt 

            2021-02-05     Synchronschreiben weiter erläutert und detaillierter beschrieben 

            2021-01-25     Darstellung von Zeitangaben und physikalischen Werten vervollständigt 

            2021-01-20     Zeitangaben vor 1970-01-01 00:00:00 UTC als negative Zeiten ergänzt 

            2020-12-13     Zeitsynchronisation, Zeitstempel bei Anfragen als verbindlich festgelegt  

            2020-09-24     Format DTI_DIF für differenzielle Kodierung von Datenströmen ergänzt 

            2018-03-24     Kodierung physikalischer Einheiten und Kombination von Formaten ergänzt 

            2018-01-07     Arrays von Zahlen/Text mit beliebiger Anzahl von Dimensionen ergänzt 

            2016-05-21     Abonnieren von aktuellen Daten bei Änderungen (Ereignissen) 

            2015-09-26     Neuer Arbeitstitel „FTLight“ (Faster than LIGHT, Schneller als LICHT) 

            2015-08-08     Rahmen für Entropie-Modus mit Datenraten bis nahezu 100% der Bandbreite 

            2015-05-16     Entropie-Modus für hohe Datenraten bis zu 87% der Bandbreite, z.B FPGA 

            2015-04-11     Fortsetzen eines vorherigen Synchronschreibens ergänzt 



            2014-11-22     Prüfsumme am Zeilenende optional festgelegt 

            2014-11-18     Mehrdeutigkeit für Datentyp am Zeilenanfang aufgelöst 

            2014-11-16     Daten Update/Speichern geändert (Danke an unsere Partner für die Hinweise) 

            2014-11-02     Erläuterungen zum Konzept ergänzt, Beispiele konsolidiert 

            2014-11-01     Identifikator auf universelle Eindeutigkeit erweitert 

            2014-10-31     Cosmos TOKEN, LINK ergänzt, an neue Rechtschreibung angepasst 

            2005-04-16     Entwerten von Sonderzeichen auf Backslash geändert 

            2005-03-20     Datentyp für die Darstellung von Werten ergänzt 

            2005-03-16     Framework-Funktionalität ergänzt 

            2005-03-09     Zeitdatentyp ergänzt 

            2005-03-06     Datentypen, Kapselung, Arrays und schnelle Binärsignalkodierung ergänzt 

            2005-03-03     Zahlendarstellung im Binärformat ergänzt 

            2005-02-26     Beispiele für Metadaten und Mehrkanalempfänger ergänzt 

            2005-02-20     Detaillierte Festlegungen zu Zahlenformaten 

            2005-02-17     Hexadezimalzahlen als Format ergänzt, Punkt im Identifikator 

            2004-03-10     Einführung mit allgemeinem Überblick zum Zweck ergänzt 

            2004-01-29     Versionsverwaltung ergänzt 

            2004-01-22     Request/Response durch Datenflusselemente ergänzt 

            2004-01-21     Request/Response-Fähigkeiten ergänzt 

            2004-01-20     FTLight-Speicherorganisation ergänzt 

            2004-01-19     Unterstützung für Datenintegrität ergänzt 

            2004-01-18     Erklärung für ‘FTLight-Collection’ ergänzt und Adressverwendung erweitert  

            2004-01-12     Erste Version basierend auf Diskussionen in der ERAC-VLBI-Gruppe 

	 1997-09	 Anforderungen für Datenaustausch vom 1. ERAC-Kongress in Heppenheim 



KI-Vorschläge zu Modifikationen und Erweiterungen zur 
Verbesserung der Anwendbarkeit  
Von den 7 KI-Systemen wurden teils übereinstimmend die nachfolgend aufgelisteten Hinweise und 
Vorschläge generiert. Die bereits implementierten Punkte sind grau dargestellt. 

A - FTLight File/Stream-Datenprotokoll 
• Explizites Versionsfeld im Protokoll selbst (nicht nur in der Dokumentation), das angibt, welche 

Version der FTLight-Spezifikation für die Kodierung verwendet wurde. (Claude 4.5) 

• Expliziten Mechanismus zur Versionierung der FTLight-Spezifikation hinzufügen. (GPT-5.1) 

• Mechanismus für die Versionierung der Spezifikation selbst, nicht nur der Daten. (Gemini 2.5) 

• Einführung einer expliziten Protokollversionsnummer im Header jedes FTLight-Streams/Files. 
(DeepSeek R1) 

• Die Doppelbedeutung (Komma, Semikolon) sollte ein Parser auflösen können, doch in 
komplexen oder mehrdeutigen Szenarien könnte dies zu Fehlinterpretationen führen. (Gemini 
2.5) 

• Für alle „unbegrenzten“ Größen sollte explizit eine theoretische und eine praktische Grenze 
definiert werden. (Claude 4.5) 

• Explizit zwischen logischer/konzeptioneller Unbegrenztheit und der physikalischen Realisierung 
(z.B. durch Aneinanderreihung von Blöcken fester Größe) unterscheiden. (DeepSeek R1) 

• Umfassende Beispiele für den Entropie-Modus. Deutlicher erklären, wie der Entropie-Modus mit 
der allgemeinen hierarchischen Struktur interagiert. Präzisierung der „Vermischt"-Definition. 
(DeepSeek R1) 

• Ein klares, umfassendes Beispiel für die Bit-Repräsentation eines vollständigen Datenpakets im 
Entropie-Modus. Die Abfolge von Rahmen, Adressierung und Informationsbits in einem 
durchgängigen Beispiel verdeutlichen. (Claude 4.5) 

• Wie wird im Entropie-Modus die "Anzahl der 1-Bits" in einer variablen Länge kodiert? Und wie 
kann eine Länge 0 sein? Hier bedarf es einer klareren Definition und eines Beispiels. (Gemini 
2.5) 

• Terminologie und Mechanik des Entropie-Modus klären, insbesondere in Bezug auf "kein 
Vorhalten von Datensätzen" und die "Anzahl der 1-Bits" zur Rahmenlänge. Definieren, wie die 
"Länge N" (Anzahl der Bits für die Adressierung) selbst kodiert wird, und Bereitstellen eines 
klaren Beispiels mit Bit-Mustern und deren Dekodierung. (Gemini 2.5) 

• Ergänzung des Entropie-Modus zur Steigerung der Effizienz um einen "Patch"-Mechanismus, 
der angibt, welche Bit-Bereiche einer Zeile aktualisiert werden sollen. (GPT-4o) 

• Die Aussage, dass der Entropie-Modus "nicht mit anderen Elementen vermischt werden" kann 
und "nur Daten für diesen einen IFTL übertragen werden", ist eine signifikante Einschränkung 
der ansonsten flexiblen Hierarchie. Dies deutet auf einen spezialisierten Modus hin, der 
möglicherweise eine Abkehr von der allgemeinen FTLight-Struktur erfordert und dessen 
Integration in das Gesamtkonzept (z.B. bei der Verarbeitung von Metadaten) nicht vollständig 
klar ist. (GPT-5.1) 



• Die Adressierung "nur Knoten der jeweils untersten Ebene der Informationshierarchie" und 
"Eltern-Knoten eines Ringpuffers auf unterster Ebene" ist sehr spezifisch. Ein Beispiel oder eine 
klarere Definition dieser "untersten Ebene" im Kontext einer typischen Anwendung geben. 
(GPT-5.1) 

• Klären, wie Metadaten, die nicht direkt zu den hierarchischen Nutzdaten gehören, im Entropie-
Modus behandelt werden können. Eine Möglichkeit wäre ein separates Metadaten-Sub-Stream 
oder eine Möglichkeit, Metadaten-Blöcke zu interspersieren, die explizit vom Entropie-Modus 
ausgenommen sind. (GPT-5.1) 

• Unterstützung für kryptografische Signaturen und Authentifizierung. (Claude 4.5) 

• Integration von optionalen Sicherheitslayern. Dies könnte DTIAUTH (für Authentifizierung und 
Autorisierung von Zugriffen auf Datenpfade) und DTIENC (für verschlüsselte Datenblöcke) 
umfassen. (DeepSeek R1) 

• Ergänzung des IFTL um optionale Felder für Public Keys oder Zertifikate und die Einführung 
von DTIAUTH oder DTISIGNATURE für digitale Signaturen von Datenpaketen. (GPT-4o) 

• Einführung eines DTIENCRYPT, das angibt, dass der nachfolgende Binärdatenblock 
verschlüsselt ist und welche Verschlüsselungsmethode verwendet wurde. (GPT-4o) 

• Transaktionsmanagement und atomare Schreiboperationen in die Spezifikation aufnehmen. 
(Claude 4.5) 

• Formale Beschreibung der Syntax, z.B. mittels Extended Backus-Naur Form (EBNF) oder einer 
vergleichbaren Notation. Für den Binärteil könnten Metasprachen wie ASN.1 (Abstract Syntax 
Notation One) oder moderne Ansätze wie Protocol Buffers oder FlatBuffers verwendet werden. 
(DeepSeek R1) 

• Formale Syntaxbeschreibung (EBNF) für die Textrepräsentation und eine bitgenaue formale 
Beschreibung der Binärformate. (Claude 4.5) 

• Ergänzung der Spezifikation um eine formale Grammatik (z.B. in BNF oder EBNF) zur 
Erhöhung der Eindeutigkeit für Parser-Entwickler und für das Aufdecken eventueller logischer 
Inkonsistenzen, die in beschreibendem Text übersehen werden könnten. (GPT-4o) 

• Formale Grammatik (z.B. EBNF) für die FTLight-Syntax erstellen. (Grok 4.1) 

• Formaler Zustandsautomat oder eine EBNF-Definition des Parsings der Doppeldeutigkeiten von 
Komma (44) und Semikolon (59). (DeepSeek R1) 

• Detaillierter erläutern, in welchen Kontexten die Trennzeichen als Pfaderweiterung und wann als 
Beginn einer neuen Informationsmenge interpretiert werden. (GPT-5.1) 

• "FTL-kodierte Werte" im IFTL und die damit verbundenen möglichen Daten (z.B. ob auch 
Zahlen gemeint sind) klarer definieren. (Claude 4.5) 

• Explizit machen, welche Kombinationen bei der Kaskadierung von Datentypen wie DTIUNIT 
und DTIFTL zulässig sind und wie die Reihenfolge der Interpretation bei komplexen 
Kaskadierungen ist. (Claude 4.5) 

• Die Bedeutung und Behandlung von leeren Elementen im Kontext der Datenstruktur und des 
Parsers sollte explizit beschrieben werden. (Claude 4.5) 

• Einheitliche Adressierung von Arrays. Die Regeln für die Adressierung von Teilmengen 
(„Zahlen2-1") sind spezifisch und sollten lückenlos sein. (Claude 4.5) 



• Klarstellen, dass die aktuelle Spezifikation ohne die offene Aufgabe „Überschusskombinationen 
zur Kompression und erweiterte Funktionen" bereits funktionsfähig ist und diese nur ein 
potenzielles Erweiterungsfeld darstellen. (DeepSeek R1) 

• Verdeutlichung der genauen Rolle von FTL innerhalb von NUM und wie komplexe Zahlen (z.B. 
mit Exponenten) intern in FTL-Symbole zerlegt werden. (DeepSeek R1) 

• Im "Entwicklungsverlauf" oder in einem Vorwort noch expliziter machen, welche Teile als 
prototypisch oder explorativ angesehen werden. (DeepSeek R1) 

• Explizite Definition von "Stream-Headern" und "Stream-Records", die über die reine 
Dateistruktur hinausgehen. Einführung von Mechanismen für "Event-Time" und "Processing-
Time" in den Zeitstempeln, um die Verarbeitung von Echtzeitdaten zu verbessern. Ggf. ein 
DTIEVENT Datentyp, der auslösenden Ereignissen spezifische Metadaten zuweisen kann. 
(DeepSeek R1) 

• Die Spezifikation noch stärker auf die Bit-Ebene abstellen, um die ultimative Effizienz zu 
erreichen, insbesondere für FPGA-Implementierungen. Die "Offene Aufgabe" des FTL-
Datentyps explizit mit Bit-Manipulationen (z.B. Run-Length Encoding für Null-Bit-Sequenzen) 
konkretisieren. (DeepSeek R1) 

• Eine Referenzimplementierung (oder detaillierte Blaupausen) von kritischen Teilen des 
Protokolls in einer Hardware Description Language (HDL wie VHDL/Verilog) erstellen. Dies 
könnte sich auf die Kodierung der DTIs, den Entropie-Modus oder die CRC-Berechnung 
konzentrieren. (DeepSeek R1) 

• Definition von optionalen "Checkpoint-Markern" im Datenstrom, die es ermöglichen, einen 
Stream von einem bestimmten Punkt aus neu zu starten oder zu verifizieren, ohne den gesamten 
Stream neu verarbeiten zu müssen. (DeepSeek R1) 

• Robustheit der Hierarchie bei Datenkorruption verbessern durch einen optionalen „Hierarchie-
Checkpoint“. Ein spezielles Zeichen oder DTI-Eintrag, der einen Checkpoint signalisiert und 
eine Prüfsumme über die aktuelle Pfadstruktur bis zu diesem Punkt enthält. Im Falle eines 
Fehlers könnte der Parser zum letzten Checkpoint zurückspringen. (GPT-4o) 

• Entwicklung einer umfangreichen Testsuite mit validen und invaliden FTLight-Dateien/Streams 
sowie Tools zur Validierung der Konformität von Implementierungen mit der Spezifikation. 
(DeepSeek R1) 

• Ergänzung der Spezifikation durch eine Referenzimplementierung in einer gängigen 
Programmiersprache (z.B. Python, C++, Rust). (DeepSeek R1) 

• Ein direkter Vergleich der Kodierungs"effizienz" (Bit/Byte pro Informationsgehalt) und der 
Kodierungsrate zusätzlich zur Aussage "MCL - höchste Rate" vs. "FTL - höchste Effizienz“ 
(Gemini 2.5) 

• Die Spezifikation sollte klarer definieren, wie die "Unbegrenztheit" technisch umgesetzt wird 
(z.B. durch Längenpräfixe oder spezielle End-Marker). (Gemini 2.5) 

• Mechanismus des impliziten Verweises im Beispiel für Frequenz (alt/neu) klarer definieren. 
(DeepSeek R1) 

• Handling von Backslash-Entwertung. Es stellt sich die Frage, wie ein Literal-Backslash im Text 
selbst dargestellt wird – muss dieser dann \\ sein? (Gemini 2.5) 

• Explizit erwähnen, was passiert, wenn der Backslash selbst als Literal benötigt wird und 
üblicherweise durch \\ entwertet wird. (GPT-5.1) 



• Regel für die Entwertung des Backslash-Zeichens selbst hinzufügen (z.B. \\ für einen literal 
Backslash). (GPT-5.1) 

• Die Verwaltung der Dynamik bei der dynamischen Bitbreite von DTI_DIF muss sehr präzise 
definiert sein, um Inkonsistenzen bei der Interpretation zu vermeiden. (Gemini 2.5) 

• Genaue Strategie zur Sicherstellung der Abwärtskompatibilität bei strukturellen Änderungen der 
Spezifikation (nicht nur Datenänderungen). Wie wird beispielsweise ein alter Parser mit neuen 
Datentypen oder Kontrollfeldern umgehen, die er nicht kennt? (Gemini 2.5) 

• Die unterschiedlichen Effizienzangaben und Optimierungsziele (wie bei MCL, FTL, FPGA) 
besser harmonisieren oder klarer abgrenzen. (Gemini 2.5) 

• Beim Ringpuffer sollte klarer zwischen "keine Speicherung" (im Sinne von Persistenz) und 
"Pufferung" (im Sinne von temporärem Vorhalten) unterschieden werden. (Gemini 2.5) 

• Ist der Kontext immer ausreichend, um zwischen den beiden Verwendungen des @-Zeichens 
sowohl als Trennzeichen innerhalb des IFTL (z.B. AB@C.D) als auch als Operator für 
synchrone Schreiboperationen (@ gefolgt von einer Ringpufferlänge). zu unterscheiden? 
(Gemini 2.5) 

• Eindeutige Zeichen für verschiedene Funktionen, um Doppelbedeutungen zu vermeiden oder 
diese expliziter zu machen, z.B. für das @-Zeichen: Wenn es als Teil eines IFTL verwendet wird, 
sollte es entweder immer von einem Escape-Zeichen gefolgt sein (z.B. \@) oder das IFTL sollte 
durch spezielle Begrenzer umschlossen sein, um es von seinem Operator-Kontext zu trennen. 
(Gemini 2.5) 

• Erweiterung des Abschnitts "Wiederherstellung defekter Daten" um explizite Mechanismen zur 
Fehlererkennung und -korrektur (nicht nur Erkennung). Redundanz-Kodierungen (z.B. Reed-
Solomon) für kritische Metadaten oder Teile des Datenstroms in Betracht ziehen, um eine 
automatische Rekonstruktion zu ermöglichen. Definieren, wie ein Parser auf Fehler reagieren 
soll (z.B. Logging, Markierung defekter Bereiche, Versuch der partiellen Wiederherstellung). 
(Gemini 2.5) 

• Für die Übertragung in rauen Umgebungen (Weltraum) könnten Forward Error Correction (FEC) 
Codes auf Byte- oder Block-Ebene ergänzt werden, insbesondere für den Entropie-Modus. 
Optionaler `DTIFEC Datentyp oder ControlX Parameter, der angibt, dass nachfolgende Daten 
mit einem bestimmten FEC-Code geschützt sind. (GPT-4o) 

• Vorwärtsfehlerkorrektur-Codes (FEC) auch in den Übertragungsprotokoll-Layer integrieren. 
(Gemini 2.5) 

• Für die Langzeitarchivierung und Übertragung in Umgebungen mit hohem Rauschen (z.B. 
Weltraumkommunikation) könnten Fehlerkorrekturcodes (Forward Error Correction, FEC) wie 
Reed-Solomon-Codes oder LDPC-Codes in FTLight integriert werden. (Grok 4.1) 

• Rolle der FPGA-Hardware-Implementierung betonen. Abstraktion, wie Hardware diese "Bit-
Level"-Operationen effizient umsetzt. (Gemini 2.5) 

• Spezifische FPGA-Hardware-Module zur Dekodierung und Verarbeitung von DTI_UNIT und 
DTI_TIME. Ergänzung der Spezifikation um Empfehlungen für FPGA-Hardware-
Implementierungen dieser DTI, ähnlich der Beschreibung des MCL-Datentyps. (GPT-4o) 

• Definition von einer Low-Level-Hardware-Schnittstellen (z.B. Register, DMA-Kanäle) für den 
effizienten Zugriff auf FTLight-Daten. Ein separates "FTLight Hardware Abstraction Layer 
(HAL)" oder "FTLight-on-Chip" Spezifikationsdokument, das die Integration auf Bit- und 
Register-Ebene beschreibt. (GPT-4o) 



• Anhang mit definiertem Fehlercode-Katalog zur Verbesserung der Diagnose und Interoperabilität 
bei Parser- und Laufzeitfehlern. (GPT-4o) 

• Explizite Fehlercodes für Fälle definieren, in denen die Regeln des Protokolls verletzt werden 
(z.B. falsche Trennzeichenreihenfolge, ungültige DTI-Werte). (Grok 4.1) 

• Spezifische Fehlertypen und -codes für gängige Probleme definieren (z.B. fehlerhafte Struktur, 
unbekannte Datentypen, ungültige Adressierungen, Prüfsummenfehler). (GPT-5.1) 

• Standardisierte Fehlerantworten definieren, um dem anfragenden System klar mitzuteilen, wenn 
eine Anfrage nicht erfüllt werden kann und warum. (GPT-5.1) 

• Ein spezielles DTIEOS` (End-of-Stream) Element für den Stream-Betrieb als ein klar 
definierter "End-of-Stream"-Marker, um das Ende eines logischen Datenstroms anzuzeigen, auch 
wenn der physische Kanal noch offen ist. (GPT-4o) 

• Konkretere Vorschläge für die ungenutzten Kombinationen im 31-Bit-Feld, wie diese für 
Features wie Bit-Masken, erweiterte Kompression (Null-Bit/Eins-Bit-Folgen) oder sogar für eine 
dynamische Typ-Erweiterung genutzt werden könnten. (Gemini 2.5) 

• Die "offene Aufgabe" für die ungenutzten Radix-216-Kombinationen sollte als expliziter 
Mechanismus für künftige, abwärtskompatible Erweiterungen genutzt werden. (Perplexity) 

• Richtlinie, wie neue, spezialisierte Datentypen oder Kompressionsschemata die ungenutzten 
Kombinationen verwenden sollen. (Perplexity) 

• Eine positive und explizite Liste oder ein Algorithmus, welche Symbolkombinationen als DTI-
Identifikatoren reserviert sind und wie diese konkret gebildet werden. (GPT-5.1) 

• Den genauen Unterschied von DTIFTLightOpen und DTIFTLightWrap erklären und die 
Anwendungsfälle klarer abgrenzen. Insbesondere die Implikationen für die Kompatibilität und 
Interoperabilität bei der Verwendung solcher "offener" oder "eingekapselter" Formate müssen 
genauer beleuchtet werden. (GPT-5.1) 

• Unterschiede DTIFTLightOpen vs. DTIFTLightWrap präzisieren. DTI_FTLightOpen könnte für 
neue, FTLight-konforme binäre Formate sein, die von Grund auf in der FTLight-Symbolik 
entwickelt werden. DTI_FTLightWrap könnte für existierende externe Formate sein, die als 
binärer Blob in FTLight eingebettet werden (ähnlich Base64, aber mit FTLight-Symbolen) oder 
für ganze FTLight-Archive. (GPT-5.1) 

• Die Berechnung der Prüfsumme unter Einbeziehung der Zeilennummer, die "Empfänger-seitig 
zu bilden ist", ist eine potenzielle Fehlerquelle, wenn Sender und Empfänger unterschiedliche 
Algorithmen oder Startwerte für die Zeilennummerierung verwenden. Eine explizite Definition 
des Zeilennummerierungsstarts und -inkrements ist notwendig. (GPT-5.1) 

• Abgesehen von der Datenintegrität durch Prüfsummen gibt es keine spezifischen Mechanismen 
zur Fehlererkennung und -behandlung auf Protokollebene (z.B. bei fehlerhaft formatierten Daten, 
Endlosrekursionen in Links, etc.). Für ein robustes Protokoll wären solche Überlegungen 
wichtig. (GPT-5.1) 

• Für die implizite Datentyp-Erkennung am Zeilenanfang könnten wenige, fest definierte 
Zeichenfolgen als Präfixe für Binärdaten reserviert werden, selbst außerhalb des synchronen 
Schreibens. (GPT-5.1) 

• Optionale, explizite Deklaration des Datentyps am Zeilenanfang (oder für jedes Element) 
ermöglichen, zum Beispiel TXT:"Hello", NUM:123, BIN:0xABC. (Perplexity) 



• Konsistente Regel für binären Inhalt am Zeilenanfang für alle Kontexte definieren, 
möglicherweise unter Verwendung eines expliziten Binär-Datentyp-Präfixes. (Perplexity) 

• Empfehlungen oder formale Spezifikationen für Validierungsregeln, die ein Parser oder eine 
Anwendung auf eingehende FTLight-Daten anwenden sollte, um die Konformität 
sicherzustellen. (GPT-5.1) 

• Explizite Hierarchie oder Kontextregeln, wann welche Bedeutung für Back-Apostrophs (Array-
Dimensionstrenner, QUERY/EMPTY-Operator, Kennzeichnung negativer Werte/Exponenten in 
UNIT/TIME) greift. (Grok 4.1) 

• Die Regeln für das Füllen mit Nulllbits und das Verwerfen beim Empfang müssen absolut 
wasserdicht sein, um die Konsistenz der Daten beim Entropie-Modus zu gewährleisten. (Grok 
4.1) 

• Klare Abgrenzung von Implementierungsdetails (z.B. MCL-Algorithmus, FPGA-Optimierung) 
von den Kernregeln des Protokolls, die für jede Implementierung gelten müssen. (Grok 4.1) 

• Für kritische Datenblöcke oder sehr große Dateien könnte zusätzlich zur Zeilenprüfsumme eine 
Block- oder Datei-Prüfsumme implementiert werden. (Grok 4.1) 

• Separates Zeichen oder eine DTI für QUERY/EMPTY einführen. (Grok 4.1) 

• Die "Überschusskombinationen" im FTL-Datentyp könnten für die Implementierung von 
variablen Bit-Längen genutzt werden. (Grok 4.1) 

• Implementieren von RLE oder ähnlichen einfachen Kompressionsschemata für sich 
wiederholende Bit-Felder innerhalb des FTL-Datentyps. (Grok 4.1) 

• Differenzschwelle von 100 im DTI_DIF-Datentyp adaptiv gestalten. Das Protokoll könnte 
Metadaten für einen Datenstrom enthalten, die eine optimale Differenzschwelle oder eine 
Anpassungsstrategie definieren. (Grok 4.1) 

• Für verschränkte Messwerte im DTI_DIF-Datentyp neben der reinen Bit-Aufteilung auch 
Metadaten über den verwendeten Verschränkungsalgorithmus (falls es mehrere gibt) hinzufügen. 
(Grok 4.1) 

• UNIT- und NUM-Datentypen um eine Möglichkeit ergänzen, um Fehlerbalken oder 
Konfidenzintervalle direkt in das Datenformat zu integrieren. (Grok 4.1) 

• Integration eines Versionierungsschemas für die Datenstrukturen selbst (nicht nur für die 
Protokollversion). (Grok 4.1) 

• Erweiterung der Query-Syntax, um komplexere Abfragen zu unterstützen, z.B. Bereichsabfragen 
für numerische Werte, logische Operatoren (AND, OR), Wildcards in Textfeldern. (Grok 4.1) 

• Parameter für Paginierung (Offset, Limit) und erweiterte Streaming-Kontrolle (Start/Stopp-
Parameter innerhalb eines Datenstroms) hinzufügen. (Grok 4.1) 

• Abstrakte Hardware-Schnittstelle (z.B. für Bitstrom-Verarbeitung, Puffer-Management) 
spezifizierten. (GPT-5.1)  

• Spezifikation der Hardware-Schnittstellen (FPGA-basiert) und der Logik auf Bit-Ebene noch 
detaillierter und formaler entwickeln. Dies schließt Timing-Diagramme, Registerbeschreibungen 
und Zustandstabellen ein. (Grok 4.1) 

• Definieren einer abstrakten Schnittstelle oder eines "Hardware-API", das beschreibt, welche 
Operationen eine spezialisierte Hardware (FPGA, ASIC) implementieren muss, um FTLight 
optimal zu unterstützen, z.B. Funktionen für Binärkodierung/Dekodierung, 



Prüfsummenberechnung, Adressierung im Entropie-Modus und Datenstrom-Manipulation. 
(Gemini 2.5) 

• Aspekte der Parallelisierung von Datenströmen und der Nebenläufigkeit von 
Verarbeitungsaufgaben explizit berücksichtigen, insbesondere wenn es um die Nutzung von 
FPGAs oder Multi-Core-Prozessoren geht. (Grok 4.1) 

• Ergänzung der Spezifikation mit einer viel größeren und vielfältigeren Sammlung von Beispielen 
für alle Datentypen, Strukturierungen und Operationsmodi, einschließlich Fehlerfällen. (Grok 
4.1) 

• Umfassendes Glossar aller verwendeten Begriffe und Akronyme erstellen. (Grok 4.1) 

• Für die Spezifikation einen klaren Versionierungsplan für das Dokument selbst etablieren. (Grok 
4.1) 

• Die Spezifikation sollte klarer zwischen konzeptueller und praktischer Begrenzung 
unterscheiden. (Perplexity) 

• Wenn diese "offenen Aufgaben" für ungenutzte Kombinationen im Radix-216-Schema später 
implementiert werden, muss sorgfältig darauf geachtet werden, dass die neuen Funktionen nicht 
mit den bestehenden NUM-Regeln kollidieren oder zu unerwartetem Verhalten führen. 
(Perplexity) 

• Die Handhabung negativer Zeitstempel (insbesondere die Definition des "Referenzpunktes" und 
die Interaktion mit "DTITIME" und seinen Faktoren) sollte explizit und detailliert sein. 
(Perplexity) 

• Die Implementierung der Eindeutigkeit des IFTL-Identifikators (wie man Kollisionen in einem 
verteilten System verhindert) könnte in der Praxis extrem schwierig oder unmöglich sein. 
(Perplexity) 

• Präzisere Abgrenzung von ähnlichen Konzepten, wie zum Beispiel MCL und FTL, die beide als 
"höchste Rate/Effizienz“ beschrieben werden. (Perplexity) 

• Explizite Escape-Sequenzen für Kommas, Semikolons, Doppelpunkte und Gleichheitszeichen 
innerhalb von Pfad- oder Informationselementen einführen. (Perplexity) 

• Bei Einführung von strikteren Parsing-Regeln für Trennzeichen sollte dies als eine neue Version 
der Spezifikation gekennzeichnet werden. (Perplexity) 

• Leere Pfadkomponenten explizit in der Grammatik definieren. (Perplexity) 

• Realistische praktische Obergrenzen für typische Implementierungen (Hardware- und Software-
Limits, Speicherkapazität) diskutieren. (Perplexity) 

• Für echte Streaming-Anwendungen (insbesondere bei großen Datenmengen) sind Mechanismen 
für die Flusskontrolle, Checkpoints und die Wiederherstellung bei Verbindungsabbrüchen von 
entscheidender Bedeutung. (Perplexity) 

• Klarere Syntax und Semantik für die Kennzeichnung negativer Exponenten, ggf. durch ein 
explizites Vorzeichen oder einen eigenen DTI-Typ. (Perplexity) 

• Ein umfassendes Glossar der spezifischen Begriffe (z.B. "Informationsmenge", "Parent-
Information", "synchrone Schreiboperation“) ergänzen. (Perplexity) 

•  "Entwicklungsverlauf" durch Kategorisierung (z.B. "Neue Datentypen", "Protokoll-Features", 
"Performance-Optimierungen") übersichtlicher gestalten. (Perplexity) 



• Detailliertere Spezifikation des Interfaces für FPGA-Implementierungen (z.B. Bus-Protokolle, 
Datenbreiten, Taktfrequenzen). (Perplexity) 

• Spezifische Benchmark-Szenarien und Testfälle bereitstellen. (Perplexity) 

• Explizit beschreiben, wie Parsing-Fehler, Prüfsummenfehler oder andere 
Datenintegritätsprobleme auf der Hardware-Ebene gehandhabt und an die Software gemeldet 
werden. (Perplexity) 

• Die Syntax für das Abonnieren von Daten mit Periodizität und Startzeitpunkt (z.B. 
EKD@...Frequenz,, ,0,1373217800) präziser und intuitiver gestalten. (Perplexity) 

• Definieren was passiert, wenn ein abonniertes Datenelement nicht verfügbar ist oder sich die 
Struktur ändert. (Perplexity) 

B - FTLightApp aus FTLight-Modulen konfiguriert 
• Formale Sprache (ähnlich XML Schema oder JSON Schema) zur Definition von FTLight-

Datenstrukturen entwickeln. (Grok 4.1) 

• Definition eines standardisierten Fehler- und Warnmeldungsformats innerhalb des FTLight-
Protokolls (DTIERROR/DTIWARNING). Dies könnte Statuscodes, Beschreibungen und optional 
referenzierende Datenpfade enthalten, um Probleme präzise zu lokalisieren. (DeepSeek R1) 

• Standardisiertes FTLight-Format für Fehlerberichte definieren, das detaillierte Informationen 
über erkannte Fehler (Typ, Position, Kontext) enthält. (Grok 4.1) 

• Standardisierte Benchmarking-Methoden und Metriken für die Performance. (Claude 4.5) 

• Präzisieren, unter welchen Umständen MCL (Rate) gegenüber FTL (Effizienz) bevorzugt werden 
sollte und Angabe von klaren Metriken (z.B. "Kodierungsrate in Bytes/Sekunde" vs. 
"Speichereffizienz in Bit/Byte“). (Gemini 2.5) 

• "Auto-Modus", bei dem das System basierend auf Hardware (ARM/Intel), Datenvolumen und 
Latenzanforderungen automatisch den besten Kodierungstyp (FTL/MCL) wählt. (Gemini 2.5) 

• Kurzes Anwendungsbeispiel oder ein Mock-up für die "FTLightApp" zeigen, wie ein Benutzer 
mit dieser App FTLight-Daten manipuliert, um die Praktikabilität der Spezifikation zu 
verdeutlichen. (Gemini 2.5) 

• Ergänzen der Spezifikation mit erwarteten oder angestrebten Performance-Metriken (z.B. Latenz, 
Durchsatz) für die FPGA-Implementierung der verschiedenen Datentypen und des Entropie-
Modus. (GPT-5.1) 

• Mechanismen hinzufügen, um Datenströmen Prioritäten zuzuweisen oder Quality of Service 
(QoS)-Parameter zu definieren. (Grok 4.1) 

• Einheitliche und effiziente Mechanismen zur Längenangabe für variable Datenfelder (Text, 
Binär) definieren, z.B. VLQs (Variable-Length Quantity) oder andere effiziente Längen-
Kodierungen, um die tatsächliche Größe des folgenden Datenblocks anzugeben. (Gemini 2.5) 



C - Apps als ausführbare Dateien (Executables) erstellt 
• Dezentraler oder föderierter Registrierungsmechanismus (ähnlich wie Domain Name Systems 

oder UUIDs) für IFTL-Präfixe. (Perplexity) 

• Ergänzung der IFTL-Definition um die Option, Universally Unique Identifiers (UUIDs) oder 
Globally Unique Identifiers (GUIDs) als Primär-Identifikatoren zu verwenden. (DeepSeek R1) 

• Mechanismus etablieren, um die "hochspezifischen Datenformate" zu registrieren (z.B. auf 
wegalink.eu oder einer zentralen Stelle). Eine eindeutige URL oder ein Registrierungsschlüssel 
im ControlX-Feld würde die Interoperabilität sicherstellen. (GPT-5.1) 

• Interoperabilität mit bestehenden Standards wie FITS oder HDF5 (Claude 4.5) 

• Empfehlung für die Verwendung von international akzeptierten Abkürzungen, ISO-Standards für 
Einheiten (bereits vorhanden im UNIT-Datentyp). (DeepSeek R1) 

• Referenz zu einer offiziellen oder de facto Standard-Einheiten-Registrierung (z.B. UDUNITS, 
QUDT) zur weiteren Erhöhung der Robustheit und der Konsistenz über verschiedene 
Anwendungen hinweg. (GPT-5.1) 

• Ergänzen von Metadaten, die angeben, mit welchem "Vertrauens-Level" bestimmte Daten 
gespeichert wurden (z.B. "Rohdaten", "validiert", „korrigiert"). (Grok 4.1) 

• Integration von geodätischen Koordinaten (Länge, Breite, Höhe) mit Bezugssystemen (WGS84, 
ITRF, etc.) in den IFTL- oder UNIT-Datentyp. (Grok 4.1) 

• Standardisierte Zeitskalen (z.B. TAI, GPS, UTC mit Leap Seconds) explizit berücksichtigten, um 
die Langzeitarchivierung zu erleichtern. (Gemini 2.5) 

• TAI, TT, TDB, GPS-Zeit mit einer erweiterten TIME-Spezifikation explizit unterstützen. (Grok 
4.1) 

• Erweiterung des Zeitmanagements mit standardisierten Methoden für die Synchronisation über 
unsichere Kanäle (wie bei Radioastronomie oft der Fall) und für die Darstellung von 
Zeitbereichen (Intervalle, Perioden). (Gemini 2.5) 

• Klären, wie FTLight mit Zeitsprüngen, ungenauen Uhren oder externen 
Zeitsynchronisationsprotokollen (NTP, PTP) umgeht. Präzisieren wie die Differenz angewendet 
wird, um Daten kohärent zu interpretieren. (GPT-5.1) 

• Generische Metadatenstruktur, die für alle Datentypen verwendet werden kann, um zusätzliche 
Informationen (z.B. Beschreibungen, Einheiten, Skalierungsfaktoren, Zeitbezüge) konsistent 
anzuhängen, z.B. ein `DTIMETA` Datentyp, der eine Liste von Schlüssel-Wert-Paaren enthält. 
Dies würde die "Framework-Funktionalität" und "Optionale Werte" systematisieren. (Gemini 
2.5) 

• Eine stärkere Formalisierung von Framework-Daten, z.B. durch die Definition von Standard-
Schlüssel-Wert-Paaren für gängige astronomische Metadaten (z.B. Observatoriums-ID, 
Instrumenten-ID, Beobachtungstyp, Himmelskoordinaten, etc.), zur Verbesserung der 
Interoperabilität. (GPT-4o) 

• Eine zusätzliche Spezifikation oder ein Katalog von empfohlenen Framework-Metadaten-
Schemata für astronomische Daten zur Erleichterung der Integration mit bestehenden 
astronomischen Metadaten-Standards. (GPT-4o) 

• Einführung von optionalen "Schema-Transformationsregeln" als Framework-Daten, die 
beschreiben, wie alte Datenstrukturen in neue überführt werden können, oder wie alte Schemata 



zu interpretieren sind. Diese könnten in speziellen Framework-Dateien gespeichert und vom 
DTI_FTLightWrap referenziert werden. (GPT-4o) 

• Es sollte betont werden, wie ein System reagiert, wenn die Framework-Empfehlungen nicht 
eingehalten werden (z.B. Warnungen, Fehlermeldungen in Logs, etc.). (Gemini 2.5) 

• Einführung eines formalisierten Metadaten- und Schemadefinitionsmechanismus innerhalb von 
FTLight. (Claude 4.5) 

• Empfehlung für die Option, den "Thema"-Teil des IFTL durch maschinenlesbare Kennungen aus 
einer zentralen Ontologie zu referenzieren, anstatt durch Freitext. (DeepSeek R1) 

• Definition eines speziellen, optionalen Metadaten-Layers, der die semantische Bedeutung von 
Datenelementen in einem maschinenlesbaren Format beschreibt (z.B. Ontologien, Schemata, 
Data Dictionaries). Dies könnte als ein "System of Records" für FTLight-Strukturen dienen. Ein 
DTIONTOLOGY oder DTISCHEMA-Datentyp könnte hierfür eingeführt werden. (DeepSeek 
R1) 

• Standardisierte Ontologie für Metadaten (z.B. "Antenne", "Azimut", "Frequenz") einführen. 
(Perplexity) 

• Mapping von FTLight-Metadaten auf Semantic Web Ontologien (RDF, OWL) als eine Brücke zu 
bestehenden Wissensrepräsentationsstandards. (GPT-5.1) 

• Integration von Links zu externen Ontologien (z.B. IVOA VO-DML für Astro-Daten) oder eine 
Light-Weight-Ontologie-Sprache innerhalb von FTLight, um die Bedeutung der Datenfelder 
formal zu beschreiben. (Grok 4.1) 

• Erweiterung des FTLightOpen-DTI, um einen obligatorischen Link (z.B. URL oder IFTL-
Adresse) zum entsprechenden Schema. (Grok 4.1) 

• Explizite Angabe des Inhalts von einem Textfeld (z.B. freier Text, URI, JSON-String) für eine 
robuste Verarbeitung. Optionaler DTI_TXL ControlX Parameter zur Angabe des Textformats/
Inhalts, z.B. DTI_TXLURL, DTITXLJSON. (GPT-4o) 

• Optionale Einrückungs- oder Zeilenumbruchregeln für komplexe hierarchische Strukturen 
definieren, die beim Parsen ignoriert werden. (Perplexity) 

• Fallstudien ergänzen, um komplexere, realitätsnahe Szenarien, die die volle Leistungsfähigkeit 
der FTLight-Spezifikation demonstrieren, insbesondere im Umgang mit "unbegrenzter Größe" 
und Langzeitarchivierung über Jahrzehnte hinweg. Aufzeigen, wie FTLight mit den aufgezeigten 
Problemen (z.B. Inkompatibilität durch Längenbeschränkungen) umgeht. (GPT-5.1) 

• Eine umfassende, gut dokumentierte API (für verschiedene Programmiersprachen) und eine 
hochwertige Referenzimplementierung (Open Source) wären entscheidend für die Akzeptanz. 
Aktive Förderung einer Community-Entwicklung um eine Referenzbibliothek und Tools (Parser, 
Serialisierer, Viewer, Editoren) auf Basis der Open-Source-Spezifikation. (GPT-4o) 

• Eine Standard-Open-Source-Lizenz (z.B. Apache 2.0, MIT) wäre klarer und würde die 
Akzeptanz und Beitragsmöglichkeiten in der Community erhöhen. (GPT-5.1) 


	FTLight File/Stream Datenstruktur und Datenaustausch
	Version
	Anwendung
	Versionsverlauf
	Einladung zur breiteren Mitarbeit und Erklärung zur Lizenz
	Kontakt

	Lizenz
	Mitarbeit
	Inhaltsverzeichnis
	Summary
	Überblick
	Review der FTLight-Spezifikation durch KI-Systeme
	Zielstellung
	Einführung
	Fallstudien
	A – Datenreihe
	B – Datensatz mit Zeitstempel
	C – Strukturierte Information
	Bildung von strukturierten Informationen

	Abbildung strukturierter Informationen in einem File/Stream
	Entwurfsziele
	File/Stream-Struktur
	Zeilen innerhalb eines Files/Streams
	Informationselemente innerhalb einer Zeile
	Statusabhängige Steuerzeichen
	Duplizierte Informationselemente in aufeinanderfolgenden Zeilen
	Vergrößerung einer Informationsmenge durch eine Folgezeile
	Verwalten eines aktuellen Pfades
	Verwalten einer übergeordneten (Parent-)Informationsmenge
	Synchrone Schreiboperationen
	Füllen von Tabellenspalten mit formatierten Arrays
	Volatiles Synchronschreiben
	Wiederaufsetzen beim Synchronschreiben
	Datentypen am Zeilenanfang
	Tabellen-Import

	Vergleich von FTLight-Strukturen mit Verzeichnissen, Registraturen und Datenbanken
	Verzeichnisse in Dateisystemen
	Registraturen
	Datenbanken


	Datentypen
	Sonderzeichen
	Textdatentyp
	Datentyp für Zahlendarstellung
	Arrays von Zahlen und Text
	Binärer Datentyp (FTL)
	Zahlendarstellung im Binärformat (NUM)
	Repräsentieren von Datentypen im Binärformat (DTI_...)
	Datentyp-Identifikator (DTI)
	DTI_FTLightOpen-Datentyp
	DTI_FTLightWrap-Datentyp
	DTI_MCL-Datentyp
	DTI_FTL-Datentyp
	DTI_TXL-Datentyp
	DTI_DIF-Datentyp
	DTI_UNIT-Datentyp
	DTI_TIME-Datentyp
	DTI_TOKEN-Datentyp
	DTI_LINK-Datentyp
	Der FTL-Identifikator-Datentyp (IFTL)

	Adressdatentyp
	Adressdarstellung
	Umgang mit Änderungen


	Entropie-Modus (FPGA)
	Framework- Funktionalität
	Optionale Werte
	Kommentare
	Standardvorgaben
	Mehrfachspezifikationen
	Interpretation

	Datenintegrität
	Prüfsummenberechnung
	Wiederherstellung defekter Daten

	FTLight-Archiv
	Versionsverfolgung für Informationselemente
	Version der FTLight-Spezifikation
	Zeitsynchronisation
	Anfrage/Antwort-Verfahren für gespeicherte Daten
	Anfragestruktur
	Allgemeine Anfrageelemente
	Anforderung von Identifikatoren
	Zeiteinschränkungen
	Arrayabfragen


	Anfragen, Abonnieren und Schreiben von aktuellen Daten
	Datenelement spezifizieren

	Laufzeitinformationen
	Algorithmen

	Benchmarking
	Appendix A
	A.1 Beispiel für das Speichern von mehrstufigen Metadaten vor einem Interferometrie-Datenblock
	A.2 Beispiel für einen Mehrkanalempfänger mit wahlfreier Kanalselektion
	A.3 Beispiel für einen Mehrkanalempfänger mit regelmäßiger Kanalselektion

	Entwicklungsverlauf
	KI-Vorschläge zu Modifikationen und Erweiterungen zur Verbesserung der Anwendbarkeit
	A - FTLight File/Stream-Datenprotokoll
	B - FTLightApp aus FTLight-Modulen konfiguriert
	C - Apps als ausführbare Dateien (Executables) erstellt


